24 research outputs found

    Unified Data Management and Comprehensive Performance Evaluation for Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark]

    Full text link
    The field of urban spatial-temporal prediction is advancing rapidly with the development of deep learning techniques and the availability of large-scale datasets. However, challenges persist in accessing and utilizing diverse urban spatial-temporal datasets from different sources and stored in different formats, as well as determining effective model structures and components with the proliferation of deep learning models. This work addresses these challenges and provides three significant contributions. Firstly, we introduce "atomic files", a unified storage format designed for urban spatial-temporal big data, and validate its effectiveness on 40 diverse datasets, simplifying data management. Secondly, we present a comprehensive overview of technological advances in urban spatial-temporal prediction models, guiding the development of robust models. Thirdly, we conduct extensive experiments using diverse models and datasets, establishing a performance leaderboard and identifying promising research directions. Overall, this work effectively manages urban spatial-temporal data, guides future efforts, and facilitates the development of accurate and efficient urban spatial-temporal prediction models. It can potentially make long-term contributions to urban spatial-temporal data management and prediction, ultimately leading to improved urban living standards.Comment: 14 pages, 3 figures. arXiv admin note: text overlap with arXiv:2304.1434

    Spatio-Temporal Deep Learning Approaches for Addressing Track Association Problem using Automatic Identification System (AIS) Data

    Get PDF
    In the realm of marine surveillance, track association constitutes a pivotal yet challenging task, involving the identification and tracking of unlabelled vessel trajectories. The need for accurate data association algorithms stems from the urge to spot unusual vessel movements or threat detection. These algorithms link sequential observations containing location and motion information to specific moving objects, helping to build their real-time trajectories. These threat detection algorithms will be useful when a vessel attempts to conceal its identity. The algorithm can then identify and track the specific vessel from its incoming signal. The data for this study is sourced from the Automatic Identification System, which serves as a communication medium between neighboring ships and the control center. While traditional methods have relied on sequential tracking and physics-based models, the emergence of deep learning has significantly transformed techniques typically used in trajectory prediction, clustering, and anomaly detection. This transformation is largely attributed to the deep learning algorithm’s capability to model complex nonlinear relationships while capturing both the spatial and temporal dynamics of ship movement. Capitalizing on this computational advantage, our study focuses on evaluating different deep learning architectures such as Multi Model Long Short-Term Memory (LSTM), 1D Convolutional-LSTM, and Temporal-Graph Convolutional Neural Networks— in addressing the problem of track association. The performance of these proposed models are compared against different deep learning algorithms specialized in track association tasks using several real-life AIS datasets

    Data-driven Methodologies and Applications in Urban Mobility

    Get PDF
    The world is urbanizing at an unprecedented rate where urbanization goes from 39% in 1980 to 58% in 2019 (World Bank, 2019). This poses more and more transportation demand and pressure on the already at or over-capacity old transport infrastructure, especially in urban areas. Along the same timeline, more data generated as a byproduct of daily activity are being collected via the advancement of the internet of things, and computers are getting more and more powerful. These are shown by the statistics such as 90% of the world’s data is generated within the last two years and IBM’s computer is now processing at the speed of 120,000 GPS points per second. Thus, this dissertation discusses the challenges and opportunities arising from the growing demand for urban mobility, particularly in cities with outdated infrastructure, and how to capitalize on the unprecedented growth in data in solving these problems by ways of data-driven transportation-specific methodologies. The dissertation identifies three primary challenges and/or opportunities, which are (1) optimally locating dynamic wireless charging to promote the adoption of electric vehicles, (2) predicting dynamic traffic state using an enormously large dataset of taxi trips, and (3) improving the ride-hailing system with carpooling, smart dispatching, and preemptive repositioning. The dissertation presents potential solutions/methodologies that have become available only recently thanks to the extraordinary growth of data and computers with explosive power, and these methodologies are (1) bi-level optimization planning frameworks for locating dynamic wireless charging facilities, (2) Traffic Graph Convolutional Network for dynamic urban traffic state estimation, and (3) Graph Matching and Reinforcement Learning for the operation and management of mixed autonomous electric taxi fleets. These methodologies are then carefully calibrated, methodically scrutinized under various performance metrics and procedures, and validated with previous research and ground truth data, which is gathered directly from the real world. In order to bridge the gap between scientific discoveries and practical applications, the three methodologies are applied to the case study of (1) Montgomery County, MD, (2) the City of New York, and (3) the City of Chicago and from which, real-world implementation are suggested. This dissertation’s contribution via the provided methodologies, along with the continual increase in data, have the potential to significantly benefit urban mobility and work toward a sustainable transportation system

    Knowing your FATE: Friendship, Action and Temporal Explanations for User Engagement Prediction on Social Apps

    Full text link
    With the rapid growth and prevalence of social network applications (Apps) in recent years, understanding user engagement has become increasingly important, to provide useful insights for future App design and development. While several promising neural modeling approaches were recently pioneered for accurate user engagement prediction, their black-box designs are unfortunately limited in model explainability. In this paper, we study a novel problem of explainable user engagement prediction for social network Apps. First, we propose a flexible definition of user engagement for various business scenarios, based on future metric expectations. Next, we design an end-to-end neural framework, FATE, which incorporates three key factors that we identify to influence user engagement, namely friendships, user actions, and temporal dynamics to achieve explainable engagement predictions. FATE is based on a tensor-based graph neural network (GNN), LSTM and a mixture attention mechanism, which allows for (a) predictive explanations based on learned weights across different feature categories, (b) reduced network complexity, and (c) improved performance in both prediction accuracy and training/inference time. We conduct extensive experiments on two large-scale datasets from Snapchat, where FATE outperforms state-of-the-art approaches by ≈10%{\approx}10\% error and ≈20%{\approx}20\% runtime reduction. We also evaluate explanations from FATE, showing strong quantitative and qualitative performance.Comment: Accepted to KDD 2020 Applied Data Science Trac

    Dynamic Activity Predictions using Graph-based Neural Networks for Time Series Forecasting

    Get PDF
    Title from PDF of title page, viewed June 28, 2023Thesis advisor: Yugyung LeeVitaIncludes bibliographical references (pages 75-81)Thesis (M.S.)--Department of Computer Science and Electrical Engineering. University of Missouri--Kansas City, 2023Time series forecasting is a vital task in numerous fields, and traditional methods, machine learning models, and neural graph networks have been employed to improve prediction accuracy. However, these techniques need to be revised to understand interdependencies and establishing long-term dependencies when dealing with a network of time series, such as predicting energy demand on interconnected grids. To tackle these challenges, this thesis introduces a framework implementing Attention-based Temporal Graph Convolutional Networks (ATGCNs) that enables holistic treatment of a group of time series while learning inter-dependencies and facilitating message passing for enhanced model efficiency. The major contribution of this thesis lies in developing graph embedding algorithms that convert Microbusiness density data into graph data, considering the spatial distance and time series for the proposed ATGCNs model, enabling dynamic activity predictions. The proposed framework is evaluated through experiments using a U.S. Microbusiness density dataset from the GoDaddy Open Survey. The results reveal that ATGCNs outperform traditional time series statistics and machine learning methods in various evaluation metrics, demonstrating comparable forecasting performance to conventional time series forecasting while addressing network scalability and dynamic nature. Additionally, real-time prediction visualizations based on Tableau were developed to showcase the dynamic nature of predictions in the U.S. Microbusiness density domain. In conclusion, this study’s findings highlight the potential advantages of employing graph-based neural networks for time series forecasting, suggesting that incorporating additional data sources could improve prediction accuracy. As future work, transfer learning with ATGCNs will be applied to new domains such as climate prediction or energy demand on interconnected grids. Furthermore, the graph-embedding algorithm and visualization techniques developed in this project will be applied to new domains and datasets across different domains.Introduction -- Related work -- Methods and methodologies -- Results and discussion -- Conclusion and future wor

    Lane-GNN: integrating GNN for predicting drivers’ lane change intention

    Get PDF
    Nowadays, intelligent highway traffic network is playing an important role in modern transportation infrastructures. A variable speed limit (VSL) system can be facilitated in the highway traffic network to provide useful and dynamic speed limit information for drivers to travel with enhanced safety. Such system is usually designed with a steady advisory speed in mind so that traffic can move smoothly when drivers follow the speed, rather than speeding up whenever there is a gap and slowing down at congestion. However, little attention has been given to the research of vehicles’ behaviours when drivers left the road network governed by a VSL system, which may largely involve unexpected acceleration, deceleration and frequent lane changes, resulting in chaos for the subsequent highway road users. In this paper, we focus on the detection of traffic flow anomaly due to drivers’ lane change intention on the highway traffic networks after a VSL system. More specifically, we apply graph modelling on the traffic flow data generated by a popular mobility simulator, SUMO, at road segment levels. We then evaluate the performance of lane changing detection using the proposed Lane-GNN scheme, an attention temporal graph convolutional neural network, and compare its performance with a temporal convolutional neural network (TCNN) as our baseline. Our experimental results show that the proposed Lane-GNN can detect drivers’ lane change intention within 90 seconds with an accuracy of 99.42% under certain assumptions. Finally, some interpretation methods are applied to the trained models with a view to further illustrate our findings

    Interactive, multi-purpose traffic prediction platform using connected vehicles dataset

    Get PDF
    Traffic congestion is a perennial issue because of the increasing traffic demand yet limited budget for maintaining current transportation infrastructure; let alone expanding them. Many congestion management techniques require timely and accurate traffic estimation and prediction. Examples of such techniques include incident management, real-time routing, and providing accurate trip information based on historical data. In this dissertation, a speech-powered traffic prediction platform is proposed, which deploys a new deep learning algorithm for traffic prediction using Connected Vehicles (CV) data. To speed-up traffic forecasting, a Graph Convolution -- Gated Recurrent Unit (GC-GRU) architecture is proposed and analysis of its performance on tabular data is compared to state-of-the-art models. GC-GRU's Mean Absolute Percentage Error (MAPE) was very close to Transformer (3.16 vs 3.12) while achieving the fastest inference time and a six-fold faster training time than Transformer, although Long-Short-Term Memory (LSTM) was the fastest in training. Such improved performance in traffic prediction with a shorter inference time and competitive training time allows the proposed architecture to better cater to real-time applications. This is the first study to demonstrate the advantage of using multiscale approach by combining CV data with conventional sources such as Waze and probe data. CV data was better at detecting short duration, Jam and stand-still incidents and detected them earlier as compared to probe. CV data excelled at detecting minor incidents with a 90 percent detection rate versus 20 percent for probes and detecting them 3 minutes faster. To process the big CV data faster, a new algorithm is proposed to extract the spatial and temporal features from the CSV files into a Multiscale Data Analysis (MDA). The algorithm also leverages Graphics Processing Unit (GPU) using the Nvidia Rapids framework and Dask parallel cluster in Python. The results show a seventy-fold speedup in the data Extract, Transform, Load (ETL) of the CV data for the State of Missouri of an entire day for all the unique CV journeys (reducing the processing time from about 48 hours to 25 minutes). The processed data is then fed into a customized UNet model that learns highlevel traffic features from network-level images to predict large-scale, multi-route, speed and volume of CVs. The accuracy and robustness of the proposed model are evaluated by taking different road types, times of day and image snippets of the developed model and comparable benchmarks. To visually analyze the historical traffic data and the results of the prediction model, an interactive web application powered by speech queries is built to offer accurate and fast insights of traffic performance, and thus, allow for better positioning of traffic control strategies. The product of this dissertation can be seamlessly deployed by transportation authorities to understand and manage congestions in a timely manner.Includes bibliographical references

    Passenger BIBO detection with IoT support and machine learning techniques for intelligent transport systems

    Get PDF
    The present article discusses the issue of automation of the CICO (Check-In/Check-Out) process for public transport fare collection systems, using modern tools forming part of the Internet of Things, such as Beacon and Smartphone. It describes the concept of an integrated passenger identification model applying machine learning technology in order to reduce or eliminate the risks associated with the incorrect classification of a smartphone user as a vehicle passenger. This will allow for the construction of an intelligent fare collection system, operating in the BIBO (Be-In/Be-Out) model, implementing the "hands-free" and "pay-as-you-go" approach. The article describes the architecture of the research environment, and the implementation of the elaborated model in the Bad.App4 proprietary solution. We also presented the complete process of concept verification under real-life conditions. Research results were described and supplemented with commentary

    Towards Autonomous Computer Networks in Support of Critical Systems

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    corecore