33,802 research outputs found

    A Developer-Friendly Library for Smart Home IoT Privacy-Preserving Traffic Obfuscation

    Full text link
    The number and variety of Internet-connected devices have grown enormously in the past few years, presenting new challenges to security and privacy. Research has shown that network adversaries can use traffic rate metadata from consumer IoT devices to infer sensitive user activities. Shaping traffic flows to fit distributions independent of user activities can protect privacy, but this approach has seen little adoption due to required developer effort and overhead bandwidth costs. Here, we present a Python library for IoT developers to easily integrate privacy-preserving traffic shaping into their products. The library replaces standard networking functions with versions that automatically obfuscate device traffic patterns through a combination of payload padding, fragmentation, and randomized cover traffic. Our library successfully preserves user privacy and requires approximately 4 KB/s overhead bandwidth for IoT devices with low send rates or high latency tolerances. This overhead is reasonable given normal Internet speeds in American homes and is an improvement on the bandwidth requirements of existing solutions.Comment: 6 pages, 6 figure

    Smart Procurement of Naturally Generated Energy (SPONGE) for Plug-in Hybrid Electric Buses

    Get PDF
    We discuss a recently introduced ECO-driving concept known as SPONGE in the context of Plug-in Hybrid Electric Buses (PHEB)'s.Examples are given to illustrate the benefits of this approach to ECO-driving. Finally, distributed algorithms to realise SPONGE are discussed, paying attention to the privacy implications of the underlying optimisation problems.Comment: This paper is recently submitted to the IEEE Transactions on Automation Science and Engineerin

    Effects of network trace sampling methods on privacy and utility metrics

    Get PDF
    Researchers studying computer networks rely on the availability of traffic trace data collected from live production networks. Those choosing to share trace data with colleagues must first remove or otherwise anonymize sensitive information. This process, called sanitization, represents a tradeoff between the removal of information in the interest of identity protection and the preservation of data within the trace that is most relevant to researchers. While several metrics exist to quantify this privacy-utility tradeoff, they are often computationally expensive. Computing these metrics using a sample of the trace, rather than the entire input trace, could potentially save precious time and space resources, provided the accuracy of these values does not suffer. In this paper, we examine several simple sampling methods to discover their effects on measurement of the privacy-utility tradeoff when anonymizing network traces prior to their sharing or publication. After sanitizing a small sample trace collected from the Dartmouth College wireless network, we tested the relative accuracy of a variety of previously implemented packet and flow-sampling methods on a few existing privacy and utility metrics. This analysis led us to conclude that, for our test trace, no single sampling method we examined allowed us to accurately measure the trade-off, and that some sampling methods can produce grossly inaccurate estimates of those values. We were unable to draw conclusions on the use of packet versus flow sampling in these instances

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Net-knitting: the library paradigm and the new environment

    Get PDF
    It is the purpose of this paper to argue that librarians have been blinded to its basic flaws by the gaudiness of the Internet and that we are confusing sources and resources. The Internet shows none of the features required for scholarly communication and whether or not we believe this will change, we should be developing models which offer electronic services as a viable and reliable resource
    • …
    corecore