102 research outputs found

    Virtual Topology Reconfrigation of WDM Optical Network with Minimum Physical Node

    Get PDF
    This paper review the reconfiguration of high capacity WDM optical Network, messages are carried in all optical form using light paths. The set of semi-permanent light paths which are set up in the network may be viewed as a virtual topology by higher layers such as SONET, ATM and IP. Reconfiguration is to charge in virtual topology to meet traffic pattern in high layers. It provides a trade off between objective value and the no. of changes to the virtual topology. In another study Objective is to design the logical topology & routing Algorithm on physical topology, so as to minimize the net work congestion while constraining the average delay seen by source destination pair and the amount of processing required at the nodes. Failure handling in WDM Networks is of prime importance due to the nature and volume of traffic, these network carry, failure detection is usually achieved by exchanging control messages among nodes with time out mechanism. Newer and more BW thirsty applications emerging on the horizon and WDM is to leveraging the capabilities of the optical fiber Wavelength  routing  is  the  ability  to  switch  a  signal  at intermediate  nodes  in  a  WDM  network  based  on  their wavelength. Virtual topology can be reconfigured when necessary to improve performance. To create the virtual topology different from the physical topology of the underlying network, is the ability of wavelength routing WDM. Keywords: WDM, Physical Topology, Virtual Topology and Reconfiguratio

    Multicast protection and energy efficient traffic grooming in optical wavelength routing networks.

    Get PDF
    Zhang, Shuqiang.Thesis (M.Phil.)--Chinese University of Hong Kong, 2010.Includes bibliographical references (p. 74-80).Abstracts in English and Chinese.Abstract --- p.i摘要 --- p.ivAcknowledgements --- p.vTable of Contents --- p.viChapter Chapter 1 --- Background --- p.1Chapter 1.1 --- Routing and Wavelength Assignment --- p.1Chapter 1.2 --- Survivability in Optical Networks --- p.3Chapter 1.3 --- Optical Multicasting --- p.4Chapter 1.3.1 --- Routing and Wavelength Assignment of Optical Multicast --- p.5Chapter 1.3.2 --- Current Research Topics about Optical Multicast --- p.8Chapter 1.4 --- Traffic Grooming --- p.10Chapter 1.4.1 --- Static Traffic Grooming --- p.11Chapter 1.4.2 --- Dynamic Traffic Grooming --- p.13Chapter 1.5 --- Contributions --- p.15Chapter 1.5.1 --- Multicast Protection with Scheduled Traffic Model --- p.15Chapter 1.5.2 --- Energy Efficient Time-Aware Traffic Grooming --- p.16Chapter 1.6 --- Organization of Thesis --- p.18Chapter Chapter 2 --- Multicast Protection in WDM Optical Network with Scheduled Traffic --- p.19Chapter 2.1 --- Introduction --- p.19Chapter 2.2 --- Multicast Protection under FSTM --- p.22Chapter 2.3 --- Illustrative Examples --- p.28Chapter 2.4 --- Two-Step Optimization under SSTM --- p.37Chapter 2.5 --- Summary --- p.40Chapter Chapter 3 --- Energy Efficient Time-Aware Traffic Grooming in Wavelength Routing Networks --- p.41Chapter 3.1 --- Introduction --- p.41Chapter 3.2 --- Energy consumption model --- p.43Chapter 3.3 --- Static Traffic Grooming with Time awareness --- p.44Chapter 3.3.1 --- Scheduled Traffic Model for Traffic Grooming --- p.44Chapter 3.3.2 --- ILP Formulation --- p.44Chapter 3.3.3 --- Illustrative Numerical Example --- p.48Chapter 3.4 --- Dynamic Traffic Grooming with Time Awareness --- p.49Chapter 3.4.1 --- Time-Aware Traffic Grooming (TATG) --- p.51Chapter 3.5 --- Simulation Results of Dynamic Traffic Grooming --- p.54Chapter 3.5.1 --- 24-node USNET: --- p.55Chapter 3.5.2 --- 15-node Pacific Bell Network: --- p.59Chapter 3.5.3 --- 14-node NSFNET: --- p.63Chapter 3.5.4 --- Alternative Configuration of Simulation Parameters: --- p.67Chapter 3.6 --- Summary --- p.71Chapter Chapter 4 --- Conclusions and Future Work --- p.72Chapter 4.1 --- Conclusions --- p.72Chapter 4.2 --- Future Work --- p.73Bibliography --- p.74Publications during M.Phil Study --- p.8

    Design and protection algorithms for path level aggregation of traffic in WDM metro optical networks

    Get PDF
    Wavelength Division Multiplexing (WDM) promises to offer a cost effective and scalable solution to meet the emerging demands of the Internet. WDM splits the tremendous bandwidth latent in a fiber into multiple non-overlapping wavelength channels, each of which can be operated at the peak electronic rate. Commercial systems with 128 wavelengths and transmission rates of up to 40 Gbps per wavelength have been made possible using state of the art optical technologies to deal with physical impairments. Systems with higher capacities are likely to evolve in the future. The end user requirements for bandwidth, on the other hand, have been ranging from 155 Mbps to 2.5 Gbps. Dedicating a wavelength for each end user will lead to severe underutilization of WDM channels. This brings to forefront the requirement for sharing of bandwidth in a wavelength among multiple end users.;The concept of wavelength sharing among multiple clients is called grooming. Grooming can be done purely at the optical layer (optical grooming) or it can be done with support from the client layer (electronic grooming). The advantage of all optical grooming is the ease of scalability due to its transparency as opposed to electronic grooming which is constrained by electronic bottlenecks. Efforts towards enhancing optical grooming is pursued through increasing optical switching speeds. However, technologies to make optical switches with high speeds, large port counts and low insertion losses have been elusive and may continue to remain so in the near future.;Recently, there have been some research into designing new architectures and protocols focused on optical grooming without resorting to fast optical switching. Typically, this is achieved in three steps: (1) configure the circuit in the form of a path or a tree; (2) use optical devices like couplers or splitters to allow multiple transmitters and/or receivers to share the same circuit; and (3) provide an arbitration mechanism to avoid contention among end users of the circuit. This transparent sharing of the wavelength channel utilizes the network resources better than the conventional low-speed circuit switched approaches. Consequently, it becomes important to quantify the improvement in achieved performance and evaluate if the reaped benefits justify the cost of the required additional hardware and software.;The contribution of this thesis is two fold: (1) developing a new architecture called light-trails as an IP based solution for next generation WDM optical networks, and (2) designing a unified framework to model Path Level Aggregation of Traffic in metrO Optical Networks (PLATOONs). The algorithms suggested here have three features: (1) accounts for four different path level aggregation strategies---namely, point to point (for example, lightpaths), point to multi-point (for example, source based light-trails), multi-point to point (for example, destination based light-trails) and multi-point to multi-point (for example, light-trails); (2) incorporates heterogenous switching architectures; and (3) accommodates multi-rate traffic. Algorithms for network design and survivability are developed for PLATOONs in the presence of both static and dynamic traffic. Connection level dedicated/shared, segregated/mixed protection schemes are formulated for single link failures in the presence of static and dynamic traffic. A simple medium access control protocol that avoids collisions when the channel is shared by multiple clients is also proposed.;Based on extensive simulations, we conclude that, for the studied scenarios, (1) when client layer has no electronic grooming capabilities, light-trails (employing multi-point to multi-point aggregation strategy) perform several orders of magnitude better than lightpaths and (2) when client layer has full electronic grooming capabilities, source based light-trails (employing point to multi-point aggregation strategy) perform the best in wavelength limited scenarios and lightpaths perform the best in transceiver limited scenarios.;The algorithms that are developed here will be helpful in designing optical networks that deploy path level aggregation strategies. The proposed ideas will impact the design of transparent, high-speed all-optical networks.</p

    Advanced techniques for multicast service provision in core transport networks

    Get PDF
    Although the network-based multicast service is the optimal way to support of a large variety of popular applications such as high-definition television (HDTV), videoon- demand (VoD), virtual private LAN service (VPLS), grid computing, optical storage area networks (O-SAN), video conferencing, e-learning, massive multiplayer online role-playing games (MMORPG), networked virtual reality, etc., there are a number of technological and operational reasons that prevents a wider deployment. This PhD work addresses this problem in the context of core transport network, by proposing and analyzing new cost-effective and scalable techniques to support multicast both at the Optical layer and at the Network layer (MPLS-IP networks). In the Optical layer, in particular in Wavelength Division Multiplexing (WDM) Optical Circuit Switched networks, current multicast-capable OXC node designs are of a great complexity and have high attenuation levels, mainly because of the required signal splitting operation plus the traversal of a complex switching stage. This makes multi-point support rarely included in commercial OXC nodes. Inspired in previous works in the literature, we propose a novel architecture that combines the best of splitting and tap-and-continue (TaC), called 2-STC (2-split-tap-and-continue) in the framework of integrated optics. A 2-STC OXC node is a flexible design capable of tapping and splitting over up to two outgoing links in order to obtain lower end-to-end latency than in TaC and an improved power budget distribution over split-and-delivery (SaD) designs. Another advantage of this architecture is its simplicity and the reduced number of components required, scaling well even for implementations of the node with many input/output ports. Extensive simulations show that the binary split (2-split) is quite enough for most real-life core network topologies scenarios, since the average node degree is usually between 3 and 4. A variant of this design, called 2-STCg, for making the node capable of optical traffic grooming (i.e. accommodation of low-speed demands into wavelength-links) is also presented. At the Network layer, one of the main reasons that hinder multicast deployment is the high amount of forwarding state information required in core routers, especially when a large number of medium/small-sized multicast demands arrive to the core network, because the state data that needs to be kept at intermediate core routers grows proportionally to the number of multicast demands. In this scenario, we study the aggregation of multicast demands into shared distribution trees, providing a set of techniques to observe the trade-off between bandwidth and state information. This study is made in the context of MPLS VPN-based networks, with the aggregation of multicast VPNs in different real network scenarios and using novel heuristics for aggregation. Still, the main problem of aggregation is the high percentage of wasted bandwidth that depends mainly on the amount of shared trees used. On the other hand, recent works have brought back Bloom filters as an alternative for multicast forwarding. In this approach the packet header contains a Bloom filter that is evaluated at each hop for matching with the corresponding outgoing link ID. Although this approach is claimed to be stateless, it presents serious drawbacks due to false positives, namely important forwarding anomalies (duplicated flows, packet storms and loops) and the header overhead. In order to solve these drawbacks we propose D-MPSS (Depth-Wise Multi-Protocol Stateless Switching). This technique makes use of a stack of Bloom filters instead of a single one for all the path/tree, each one including only the links of a given depth of the tree. Analytical studies and simulations show that our approach reduces the forwarding anomalies present in similar state-of-the-art techniques, achieving in most network scenarios a forwarding efficiency (useful traffic) greater than 95%. Finally, we study the possibility of using tree aggregation and Bloom filters together, and propose a set of techniques grouped as H-ABF techniques (hybrid aggregation - Bloom filter-based forwarding), which improve D-MPSS and other previously proposed techniques, practically eliminating the forwarding loops and increasing the forwarding efficiency up to more than 99% in most network scenarios. -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Aunque el servicio de multidifusión (multicast) basado en redes es la mejor manera de dar soporte a una gran variedad de aplicaciones populares como la televisión de alta definición (HDTV), el video bajo demanda (VoD), el servicio de LAN privadas virtuales (VPLS), la computación grid, las redes de área de almacenamiento óptico (O-SAN), la videoconferencia, la educación a distancia, los juegos masivos de rol en línea de múltiples jugadores (MMORPG), la realidad virtual en red, etc., hay varias razones tecnológicas y operacionales que le impiden un mayor despliegue. Esta tesis doctoral aborda este problema en el contexto de las redes troncales de transporte, proponiendo y analizando técnicas de bajo coste y escalables para dar soporte al multicast tanto para la capa óptica como para la capa de red (redes MPLS-IP). En la capa óptica, en particular en las redes ópticas conmutadas por circuitos con multiplexación de longitud de onda (WDM), los diseños de nodos OXC con capacidades multicast muestran una gran complejidad y altos niveles de atenuación, principalmente debido a la necesaria operación de división de la señal, además del paso de ella a través de una compleja fase de conmutación. Esto hace que el soporte multi-punto sea raramente incluido en los nodos OXC comerciales. Inspirados en trabajos previos de la literatura, proponemos una novedosa arquitectura que combina lo mejor de dividir (splitting) y tap-y-continuar (TaC), llamado 2-STC (2-split-tapand- continue) en el marco de trabajo de la óptica integrada. Un nodo OXC 2-STC es un diseño flexible capaz de hacer tapping (tomar una pequeña muestra de la señal) y dividir la señal hacia un máximo de dos enlaces de salida, con el fin de obtener una menor latencia terminal-a-terminal que en TaC y una mejorada distribución de la disponibilidad de potencia por encima de los diseños split-and-delivery (SaD). Otra ventaja de esta arquitectura es su simplicidad y el número reducido de componentes requerido, escalando bien para las implementaciones del nodo con muchos puertos de entrada/salida. Extensas simulaciones muestran que la división binaria (2-split) es prácticamente suficiente para la mayoría de las topologías de redes de transporte en la vida real, debido a que el grado promedio de los nodos es usualmente 3 y 4. Una variante de este diseño, llamada 2-STCg, para hacer el nodo capaz de realizar grooming (es decir, la capacidad de acomodar demandas de menor velocidad en longitudes de onda - enlaces) de tráfico óptico, es también presentada. En la capa de red, una de las principales razones que obstaculizan el despliegue del multicast es la gran cantidad de información del estado de reenvío requerida en los enrutadores de la red de transporte, especialmente cuando un gran número de demandas multicast de tamaño mediano/pequeño llegan a la red de transporte, ya que los datos de estado a ser almacenados en los enrutadores crecen proporcionalmente con el número de demandas multicast. En este escenario, estudiamos la agregación de demandas multicast en árboles de distribución, proporcionando un conjunto de técnicas para observar el equilibrio entre el ancho de banda y la información de estado. Este estudio está hecho en el contexto de las redes basadas en redes privadas virtuales (VPN) MPLS, con la agregación de VPNs multicast en distintos escenarios de redes reales y utilizando nuevos heurísticos para la agregación. Aún así, el principal problema de la agregación es el alto porcentaje de ancho de banda desperdiciado que depende principalmente de la cantidad de árboles compartidos usados. Por otro lado, trabajos recientes han vuelto a traer a los filtros de Bloom como una alternativa para realizar el reenvío multicast. En esta aproximación la cabecera del paquete contiene un filtro de Bloom que es evaluado en cada salto para emparejarlo con el identificador del enlace de salida correspondiente. Aunque se afirma que esta solución no utiliza información de estado, presenta serias desventajas debido a los falsos positivos, esto es, anomalías de reenvío importantes (flujos duplicados, tormentas de paquetes y bucles) y gasto de ancho de banda por la cabecera de los paquetes. Para poder resolver estos problemas proponemos D-MPSS (Depth- Wise Multi-Protocol Stateless Switching). Esta técnica hace uso de una pila de filtros de Bloom en lugar de uno sólo para todo el camino/árbol, incluyendo cada uno sólo los enlaces de una determinada profundidad del árbol. Estudios analíticos y simulaciones demuestran que nuestra propuesta reduce los anomalías de reenvío presentes en otras técnicas similares del estado del arte, alcanzando en la mayoría de escenarios reales una eficiencia de reenvío (tráfico útil) mayor que 95%. Finalmente, estudiamos la posibilidad de usar agregación de árboles y filtros de Bloom juntos, y proponemos un conjunto de técnicas agrupadas como técnicas HABF (hybrid aggregation - Bloom filter-based forwarding), que mejoran D-MPSS y las otras técnicas propuestas previamente, eliminando prácticamente los bucles e incrementando la eficiencia de reenvío hasta más de un 99% en la mayoría de los escenarios de redes

    All Optical Signal Processing Technologies in Optical Fiber Communication

    Get PDF
    Due to continued growth of internet at starling rate and the introduction of new broadband services, such as cloud computing, IPTV and high-definition media streaming, there is a requirement for flexible bandwidth infrastructure that supports mobility of data at peta-scale. Elastic networking based on gridless spectrum technology is evolving as a favorable solution for the flexible optical networking supportive next generation traffic requirements. Recently, research is centered on a more elastic spectrum provision methodology than the traditional ITU-T grid. The main issue is the requirement for a transmission connect, capable of accommodating and handling a variety of signals with distinct modulation format, baud rate and spectral occupancy. Segmented use of the spectrum could lead to the shortage of availableness of sufficiently extensive spectrum spaces for high bitrate channels, resulting in wavelength contention. On-demand space assignment creates not only deviation from the ideal course but also have spectrum fragmentation, which reduces spectrum resource utilization. This chapter reviewed the recent research development of feasible solutions for the efficient transport of heterogeneous traffic by enhancing the flexibility of the optical layer for performing allocation of network resources as well as implementation of optical node by all optical signal processing in optical fiber communication
    corecore