2,532 research outputs found

    Packet Dispatching Schemes for Three-Stage Buffered Clos-Network Switches

    Get PDF
    Non

    A Scalable Multi-Stage Packet-Switch for Data Center Networks

    Get PDF
    The growing trends of data centers over last decades including social networking, cloud-based applications and storage technologies enabled many advances to take place in the networking area. Recent changes imply continuous demand for bandwidth to manage the large amount of packetized traffic. Cluster switches and routers make the switching fabric in a Data Center Network (DCN) environment and provide interconnectivity between elements of the same DC and inter DCs. To handle the constantly variable loads, switches need deliver outstanding throughput along with resiliency and scalability for DCN requirements. Conventional DCN switches adopt crossbars or/and blocks of memories mounted in a multistage fashion (commonly 2-Tiers or 3-Tiers). However, current multistage switches, with their space-memory variants, are either too complex to implement, have poor performance, or not cost effective. We propose a novel and highly scalable multistage switch based on Networkson- Chip (NoC) fabrics for DCNs. In particular, we describe a three-stage Clos packet-switch with a Round Robin packets dispatching scheme where each central stage module is based on a Unidirectional NoC (UDN), instead of the conventional singlehop crossbar. The design, referred to as Clos-UDN, overcomes shortcomings of traditional multistage architectures as it (i) Obviates the need for a complex and costly input modules, by means of few, yet simple, input FIFO queues. (ii) Avoids the need for a complex and synchronized scheduling process over a high number of input-output modules and/or port pairs. (iii) Provides speedup, load balancing and path-diversity thanks to a dynamic dispatching scheme as well as the NoC based fabric nature. Simulations show that the Clos-UDN outperforms some common multistage switches under a range of input traffics, making it highly appealing for ultra-high capacity DC networks

    A Scalable Packet-Switch Based on Output-Queued NoCs for Data Centre Networks

    Get PDF
    The switch fabric in a Data-Center Network (DCN) handles constantly variable loads. This is stressing the need for high-performance packet switches able to keep pace with climbing throughput while maintaining resiliency and scalability. Conventional multistage switches with their space-memory variants proved to be performance limited as they do not scale well with the proliferating DC requirements. Most proposals are either too complex to implement or not cost effective. In this paper, we present a highly scalable multistage switching architecture for DC switching fabrics. We describe a three-stage Clos packet-switch fabric with Output-Queued Unidirectional NoC (OQ-UDN) modules and Round-Robin packets dispatching scheme. The proposed OQ Clos-UDN architecture avoids the need for complex and costly input modules and simplifies the scheduling process. Thanks to a dynamic packets dispatching and the multi-hop nature of the UDN modules, the switch provides load balancing and path-diversity. We compared our proposed architecture to state-of-the art previous architectures under extensive uniform and non-uniform DC traffic settings. Simulations of various switch settings have shown that the proposed OQ Clos-UDN outperforms previous proposals and maintains high throughput and latency performance

    Congestion-Aware Multistage Packet-Switch Architecture for Data Center Networks

    Get PDF
    Data Center Networks (DCNs) have gone through major evolutionary changes over the past decades. Yet, it is still difficult to predict loads fluctuation and congestion spikes in the network switching fabric. Conventional multistage switches/routers used in data center fabrics barely deal with load balancing. Congestion management is often processed at the edge modules. However, neither the architecture of switches/routers, nor their inner routing algorithms tend to consider traffic balancing and congestion management. In this paper, we propose a flexible design of a scalable multistage switch with crossconnected UniDirectional Network-on-Chip based central blocs (UDNs). We also introduce a congestion-aware routing to forward packets adaptively. We compare the current switch architecture to the state-of-the art previous multistage switches under different traffic types. Simulations of various switch settings have shown that the proposed architecture maintains high throughput and low latency performance

    A Multi-Stage Packet-Switch Based on NoC Fabrics for Data Center Networks

    Get PDF
    Bandwidth-hungry applications such as Cloud computing, video sharing and social networking drive the creation of more powerful Data Centers (DCs) to manage the large amount of packetized traffic. Data center network (DCN) topologies rely on thousands of servers that exchange data via the switching backbone. Cluster switches and routers are employed to provide interconnectivity between elements of the same DC and inter DCs and must be able to handle the continuously variable loads. Hence, robust and scalable switching modules are needed. Conventional DCN switches adopt crossbars or/and blocks of memories in multistage interconnection architectures (commonly 2-Tiers or 3-Tiers). However, current multistage packet switch architectures, with their space-memory variants, are either too complex to implement, have poor performance, or not cost effective. In this paper, we propose a novel and highly scalable multistage packet-switch design based on Networks-on-Chip (NoC) fabrics for DCNs. In particular, we describe a novel three-stage packet-switch fabric with a Round-Robin packets dispatching scheme where each central stage module is based on a Unidirectional NoC (UDN), instead of a conventional single hop crossbar fabric. The proposed design, referred to as Clos- UDN, overcomes all the shortcomings of conventional multistage architectures. In particular, as we shall demonstrate, the proposed Clos-UDN architecture: (i) Obviates the need for a complex and costly input modules, by means of few, yet simple, input FIFO queues. (ii) Avoids the need for a complex and synchronized scheduling process over a high number of input-output modules and/or port pairs. (iii) Provides speedup, load balancing and path-diversity thanks to a dynamic dispatching scheme as well as the NoC based fabric nature. Extensive simulation studies are conducted to compare the proposed Clos-UDN switch to conventional multistage switches. Simulation results show that the Clos-UDN outperforms conventional design under a wide range of input traffic scenarios, making it highly appealing for ultra-high capacity DC networks

    High-radix Packet-Switching Architecture for Data Center Networks

    Get PDF
    We propose a highly scalable packet-switching architecture that suits for demanding Data center Networks (DCNs). The design falls into the category of buffered multistage switches. It affiliates a three-stage Clos-network and the Networks-on-Chip (NoC) paradigm. We also suggest a congestion-aware routing algorithm that shares the traffic load among the switch's central modules via interleaved connecting links. Unlike conventional switches, the current proposal provides better path diversity, simple scheduling, speedup and robustness to load variation. Simulation results show that the switch is scalable with the portcount and traffic fluctuation, and that it outperforms different switches under many traffic patterns

    High-Capacity Clos-Network Switch for Data Center Networks

    Get PDF
    Scaling-up Data Center Networks (DCNs) should be done at the network level as well as the switching elements level. The glaring reason for this, is that switches/routers deployed in the DCN can bound the network capacity and affect its performance if improperly chosen. Many multistage switching architectures have been proposed to fit for the next-generation networking needs. However all of them are either performance limited or too complex to be implemented. Targeting scalability and performance, we propose the design of a large-capacity switch in which we affiliate a multistage design with a Networks-on- Chip (NoC) design. The proposal falls into the category of buffered multistage switches. Still, it has a different architectural aspect and scheduling process. Dissimilar to common point-to-point crossbars, NoCs used at the heart of the three-stage Clos-network allow multiple packets simultaneously in the modules where they can be adaptively transported using a pipelined scheduling scheme. Our simulations show that the switch scales well with the load and size variation. It outperforms a variety of architectures under a range of traffic arrivals

    Providing Performance Guarantees in Data Center Network Switching Fabrics

    Get PDF
    This paper proposes a novel and highly scalable multistage packet-switch design based on Networks-on-Chip (NoC). In particular, we describe a three-stage packet-switch fabric with a Round-Robin packets dispatching scheme where each central stage module is an Output-Queued Unidirectional NoC (OQ-UDN), instead of the conventional single-hop crossbar. We test the switch performance under different traffic profiles. In addition to experimental results, we present an analytical approximation for the theoretical throughput of the switch under Bernoulli i.i.d arrivals. We also provide an upper-bound estimation of the end-to-end blocking probability in the proposed switch to help predict performance and to optimize the design
    • …
    corecore