1,346 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    The Reputation of Machine Learning in Wireless Sensor Networks and Vehicular Ad Hoc Networks

    Get PDF
    It's difficult to deal with the dynamic nature of VANETs and WSNs in a way that makes sense. Machine learning (ML) is a preferred method for dealing with this kind of dynamicity. It is possible to define machine learning (ML) as a way of dealing with heterogeneous data in order to get the most out of a network without involving humans in the process or teaching it anything. Several techniques for WSN and VANETs based on ML are covered in this study, which provides a fast overview of the main ML ideas. Open difficulties and challenges in quickly changing networks, as well as diverse algorithms in relation to ML models and methodologies, are also covered in the following sections. We've provided a list of some of the most popular machine learning (ML) approaches for you to consider. As a starting point for further research, this article provides an overview of the various ML techniques and their difficulties. This paper's comparative examination of current state-of-the-art ML applications in WSN and VANETs is outstanding

    Data-driven design of intelligent wireless networks: an overview and tutorial

    Get PDF
    Data science or "data-driven research" is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves

    Enhanced delay-aware and reliable routing protocol for wireless sensor network

    Get PDF
    Wireless Sensor Networks (WSN) are distributed low-rate data networks, consist of small sensing nodes equipped with memory, processors and short range wireless communication. The performance of WSN is always measured by the Quality of Service (QoS) parameters that are time delay, reliability and throughput. These networks are dynamic in nature and affect the QoS parameters, especially when real time data delivery is needed. Additionally, in achieving end-to-end delay and reliability, link failures are the major causes that have not been given much attention. So, there is a demanding need of an efficient routing protocol to be developed in order to minimize the delay and provide on time delivery of data in real time WSN applications. An efficient Delay-Aware Path Selection Algorithm (DAPSA) is proposed to minimize the access end-to-end delay based on hop count, link quality and residual energy metrics considering the on time packets delivery. Furthermore, an Intelligent Service Classifier Queuing Model (ISCQM) is proposed to distinguish the real time and non-real time traffic by applying service discriminating theory to ensure delivery of real time data with acceptable delay. Moreover, an Efficient Data Delivery and Recovery Scheme (EDDRS) is proposed to achieve improved packet delivery ratio and control link failures in transmission. This will then improve the overall throughput. Based on the above mentioned approaches, an Enhanced Delay-Aware and Reliable Routing Protocol (EDARRP) is developed. Simulation experiments have been performed using NS2 simulator and multiple scenarios are considered in order to examine the performance parameters. The results are compared with the state-of-the-art routing protocols Stateless Protocol for Real-Time Communication (SPEED) and Distributed Adaptive Cooperative Routing Protocol (DACR) and found that on average the proposed protocol has improved the performance in terms of end-to-end delay (30.10%), packet delivery ratio (9.26%) and throughput (5.42%). The proposed EDARRP protocol has improved the performance of WSN

    Machine Learning Meets Communication Networks: Current Trends and Future Challenges

    Get PDF
    The growing network density and unprecedented increase in network traffic, caused by the massively expanding number of connected devices and online services, require intelligent network operations. Machine Learning (ML) has been applied in this regard in different types of networks and networking technologies to meet the requirements of future communicating devices and services. In this article, we provide a detailed account of current research on the application of ML in communication networks and shed light on future research challenges. Research on the application of ML in communication networks is described in: i) the three layers, i.e., physical, access, and network layers; and ii) novel computing and networking concepts such as Multi-access Edge Computing (MEC), Software Defined Networking (SDN), Network Functions Virtualization (NFV), and a brief overview of ML-based network security. Important future research challenges are identified and presented to help stir further research in key areas in this direction
    • …
    corecore