5,179 research outputs found

    Hop-Based dynamic fair scheduler for wireless Ad-Hoc networks

    Get PDF
    In a typical multihop Ad-Hoc network, interference and contention increase when flows transit each node towards destination, particularly in the presence of cross-traffic. This paper observes the relationship between throughput and path length, self-contention and interference and it investigates the effect of multiple data rates over multiple data flows in the network. Drawing from the limitations of the 802.11 specification, the paper proposes a scheduler named Hop Based Multi Queue (HBMQ), which is designed to prioritise traffic based on the hop count of packets in order to provide fairness across different data flows. The simulation results demonstrate that HBMQ performs better than a Single Drop Tail Queue (SDTQ) scheduler in terms of providing fairness. Finally, the paper concludes with a number of possible directions for further research, focusing on cross-layer implementation to ensure the fairness is also provided at the MAC layer. © 2013 IEEE

    17-11 Evaluation of Transit Priority Treatments in Tennessee

    Get PDF
    Many big cities are progressively implementing transit friendly corridors especially in urban areas where traffic may be increasing at an alarming rate. Over the years, Transit Signal Priority (TSP) has proven to be very effective in creating transit friendly corridors with its ability to improve transit vehicle travel time, serviceability and reliability. TSP as part of Transit Oriented Development (TOD) is associated with great benefits to community liveability including less environmental impacts, reduced traffic congestions, fewer vehicular accidents and shorter travel times among others.This research have therefore analysed the impact of TSP on bus travel times, late bus recovery at bus stop level, delay (on mainline and side street) and Level of Service (LOS) at intersection level on selected corridors and intersections in Nashville Tennessee; to solve the problem of transit vehicle delay as a result of high traffic congestion in Nashville metropolitan areas. This study also developed a flow-delay model to predict delay per vehicle for a lane group under interrupted flow conditions and compared some measure of effectiveness (MOE) before and after TSP. Unconditional green extension and red truncation active priority strategies were developed via Vehicle Actuated Programming (VAP) language which was tied to VISSIM signal controller to execute priority for transit vehicles approaching the traffic signal at 75m away from the stop line. The findings from this study indicated that TSP will recover bus lateness at bus stops 25.21% to 43.1% on the average, improve bus travel time by 5.1% to 10%, increase side street delay by 15.9%, and favour other vehicles using the priority approach by 5.8% and 11.6% in travel time and delay reduction respectively. Findings also indicated that TSP may not affect LOS under low to medium traffic condition but LOS may increase under high traffic condition

    Goodbye, ALOHA!

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The vision of the Internet of Things (IoT) to interconnect and Internet-connect everyday people, objects, and machines poses new challenges in the design of wireless communication networks. The design of medium access control (MAC) protocols has been traditionally an intense area of research due to their high impact on the overall performance of wireless communications. The majority of research activities in this field deal with different variations of protocols somehow based on ALOHA, either with or without listen before talk, i.e., carrier sensing multiple access. These protocols operate well under low traffic loads and low number of simultaneous devices. However, they suffer from congestion as the traffic load and the number of devices increase. For this reason, unless revisited, the MAC layer can become a bottleneck for the success of the IoT. In this paper, we provide an overview of the existing MAC solutions for the IoT, describing current limitations and envisioned challenges for the near future. Motivated by those, we identify a family of simple algorithms based on distributed queueing (DQ), which can operate for an infinite number of devices generating any traffic load and pattern. A description of the DQ mechanism is provided and most relevant existing studies of DQ applied in different scenarios are described in this paper. In addition, we provide a novel performance evaluation of DQ when applied for the IoT. Finally, a description of the very first demo of DQ for its use in the IoT is also included in this paper.Peer ReviewedPostprint (author's final draft
    • …
    corecore