1,274 research outputs found

    Adaptive Network Coding for Scheduling Real-time Traffic with Hard Deadlines

    Full text link
    We study adaptive network coding (NC) for scheduling real-time traffic over a single-hop wireless network. To meet the hard deadlines of real-time traffic, it is critical to strike a balance between maximizing the throughput and minimizing the risk that the entire block of coded packets may not be decodable by the deadline. Thus motivated, we explore adaptive NC, where the block size is adapted based on the remaining time to the deadline, by casting this sequential block size adaptation problem as a finite-horizon Markov decision process. One interesting finding is that the optimal block size and its corresponding action space monotonically decrease as the deadline approaches, and the optimal block size is bounded by the "greedy" block size. These unique structures make it possible to narrow down the search space of dynamic programming, building on which we develop a monotonicity-based backward induction algorithm (MBIA) that can solve for the optimal block size in polynomial time. Since channel erasure probabilities would be time-varying in a mobile network, we further develop a joint real-time scheduling and channel learning scheme with adaptive NC that can adapt to channel dynamics. We also generalize the analysis to multiple flows with hard deadlines and long-term delivery ratio constraints, devise a low-complexity online scheduling algorithm integrated with the MBIA, and then establish its asymptotical throughput-optimality. In addition to analysis and simulation results, we perform high fidelity wireless emulation tests with real radio transmissions to demonstrate the feasibility of the MBIA in finding the optimal block size in real time.Comment: 11 pages, 13 figure

    Joint Computation Offloading and Prioritized Scheduling in Mobile Edge Computing

    Get PDF
    With the rapid development of smart phones, enormous amounts of data are generated and usually require intensive and real-time computation. Nevertheless, quality of service (QoS) is hardly to be met due to the tension between resourcelimited (battery, CPU power) devices and computation-intensive applications. Mobileedge computing (MEC) emerging as a promising technique can be used to copy with stringent requirements from mobile applications. By offloading computationally intensive workloads to edge server and applying efficient task scheduling, energy cost of mobiles could be significantly reduced and therefore greatly improve QoS, e.g., latency. This paper proposes a joint computation offloading and prioritized task scheduling scheme in a multi-user mobile-edge computing system. We investigate an energy minimizing task offloading strategy in mobile devices and develop an effective priority-based task scheduling algorithm with edge server. The execution time, energy consumption, execution cost, and bonus score against both the task data sizes and latency requirement is adopted as the performance metric. Performance evaluation results show that, the proposed algorithm significantly reduce task completion time, edge server VM usage cost, and improve QoS in terms of bonus score. Moreover, dynamic prioritized task scheduling is also discussed herein, results show dynamic thresholds setting realizes the optimal task scheduling. We believe that this work is significant to the emerging mobile-edge computing paradigm, and can be applied to other Internet of Things (IoT)-Edge applications

    Throughput Maximization in Multiprocessor Speed-Scaling

    Full text link
    We are given a set of nn jobs that have to be executed on a set of mm speed-scalable machines that can vary their speeds dynamically using the energy model introduced in [Yao et al., FOCS'95]. Every job jj is characterized by its release date rjr_j, its deadline djd_j, its processing volume pi,jp_{i,j} if jj is executed on machine ii and its weight wjw_j. We are also given a budget of energy EE and our objective is to maximize the weighted throughput, i.e. the total weight of jobs that are completed between their respective release dates and deadlines. We propose a polynomial-time approximation algorithm where the preemption of the jobs is allowed but not their migration. Our algorithm uses a primal-dual approach on a linearized version of a convex program with linear constraints. Furthermore, we present two optimal algorithms for the non-preemptive case where the number of machines is bounded by a fixed constant. More specifically, we consider: {\em (a)} the case of identical processing volumes, i.e. pi,j=pp_{i,j}=p for every ii and jj, for which we present a polynomial-time algorithm for the unweighted version, which becomes a pseudopolynomial-time algorithm for the weighted throughput version, and {\em (b)} the case of agreeable instances, i.e. for which rirjr_i \le r_j if and only if didjd_i \le d_j, for which we present a pseudopolynomial-time algorithm. Both algorithms are based on a discretization of the problem and the use of dynamic programming

    Throughput Maximization in the Speed-Scaling Setting

    Get PDF
    We are given a set of nn jobs and a single processor that can vary its speed dynamically. Each job JjJ_j is characterized by its processing requirement (work) pjp_j, its release date rjr_j and its deadline djd_j. We are also given a budget of energy EE and we study the scheduling problem of maximizing the throughput (i.e. the number of jobs which are completed on time). We propose a dynamic programming algorithm that solves the preemptive case of the problem, i.e. when the execution of the jobs may be interrupted and resumed later, in pseudo-polynomial time. Our algorithm can be adapted for solving the weighted version of the problem where every job is associated with a weight wjw_j and the objective is the maximization of the sum of the weights of the jobs that are completed on time. Moreover, we provide a strongly polynomial time algorithm to solve the non-preemptive unweighed case when the jobs have the same processing requirements. For the weighted case, our algorithm can be adapted for solving the non-preemptive version of the problem in pseudo-polynomial time.Comment: submitted to SODA 201

    Timely-Throughput Optimal Scheduling with Prediction

    Full text link
    Motivated by the increasing importance of providing delay-guaranteed services in general computing and communication systems, and the recent wide adoption of learning and prediction in network control, in this work, we consider a general stochastic single-server multi-user system and investigate the fundamental benefit of predictive scheduling in improving timely-throughput, being the rate of packets that are delivered to destinations before their deadlines. By adopting an error rate-based prediction model, we first derive a Markov decision process (MDP) solution to optimize the timely-throughput objective subject to an average resource consumption constraint. Based on a packet-level decomposition of the MDP, we explicitly characterize the optimal scheduling policy and rigorously quantify the timely-throughput improvement due to predictive-service, which scales as Θ(p[C1(aamaxq)pqρτ+C2(11p)](1ρD))\Theta(p\left[C_{1}\frac{(a-a_{\max}q)}{p-q}\rho^{\tau}+C_{2}(1-\frac{1}{p})\right](1-\rho^{D})), where a,amax,ρ(0,1),C1>0,C20a, a_{\max}, \rho\in(0, 1), C_1>0, C_2\ge0 are constants, pp is the true-positive rate in prediction, qq is the false-negative rate, τ\tau is the packet deadline and DD is the prediction window size. We also conduct extensive simulations to validate our theoretical findings. Our results provide novel insights into how prediction and system parameters impact performance and provide useful guidelines for designing predictive low-latency control algorithms.Comment: 14 pages, 7 figure

    Efficient Machine-type Communication using Multi-metric Context-awareness for Cars used as Mobile Sensors in Upcoming 5G Networks

    Full text link
    Upcoming 5G-based communication networks will be confronted with huge increases in the amount of transmitted sensor data related to massive deployments of static and mobile Internet of Things (IoT) systems. Cars acting as mobile sensors will become important data sources for cloud-based applications like predictive maintenance and dynamic traffic forecast. Due to the limitation of available communication resources, it is expected that the grows in Machine-Type Communication (MTC) will cause severe interference with Human-to-human (H2H) communication. Consequently, more efficient transmission methods are highly required. In this paper, we present a probabilistic scheme for efficient transmission of vehicular sensor data which leverages favorable channel conditions and avoids transmissions when they are expected to be highly resource-consuming. Multiple variants of the proposed scheme are evaluated in comprehensive realworld experiments. Through machine learning based combination of multiple context metrics, the proposed scheme is able to achieve up to 164% higher average data rate values for sensor applications with soft deadline requirements compared to regular periodic transmission.Comment: Best Student Paper Awar
    corecore