11 research outputs found

    LPsec: a fast and secure cryptographic system for optical connections

    Get PDF
    High capacity and low latency of optical connections are ideal for supporting current and future communication services, including 5G and beyond. Although some of those services are already secured at the packet layer using standard stream ciphers, like the Advanced Encryption Standard and ChaCha, secure transmission at the optical layer is still not implemented. To secure the optical layer, cryptographic methods need to be fast enough to support high-speed optical transmission and cannot introduce significant delay. Moreover, methods for key exchange, key generation, and key expansion are required, which can be implemented on standard coherent transponders. In this paper, we propose Light Path SECurity (LPsec), a secure cryptographic solution for optical connections that involves fast data encryption using stream ciphers and key exchange using Diffie–Hellman protocol through the optical channel. To support encryption of high-speed data streams, a fast, general-purpose pseudorandom number generator is used. Moreover, to make the scheme more secure against exhaustive search attacks, an additional substitution cipher is proposed. In contrast to the limited encryption speeds that standard stream ciphers can support, LPsec can support high-speed rates. Numerical simulation for 16 quadrature amplitude modulation (QAM), 32-QAM, and 64-QAM show that LPsec provides a sufficient security level while introducing only negligible delay.H2020 Industrial Leadership [H2020 B5G-OPEN (101016663)]; H2020 Marie Skłodowska-Curie Actions [REALNET (813144)]; Agencia Estatal de Investigación [IBON (PID2020- 114135RB-I00)]; Institució Catalana de Recerca i Estudis Avançats.Peer ReviewedPostprint (author's final draft

    Achievable secrecy enchancement through joint encryption and privacy amplification

    Get PDF
    In this dissertation we try to achieve secrecy enhancement in communications by resorting to both cryptographic and information theoretic secrecy tools and metrics. Our objective is to unify tools and measures from cryptography community with techniques and metrics from information theory community that are utilized to provide privacy and confidentiality in communication systems. For this purpose we adopt encryption techniques accompanied with privacy amplification tools in order to achieve secrecy goals that are determined based on information theoretic and cryptographic metrics. Every secrecy scheme relies on a certain advantage for legitimate users over adversaries viewed as an asymmetry in the system to deliver the required security for data transmission. In all of the proposed schemes in this dissertation, we resort to either inherently existing asymmetry in the system or proactively created advantage for legitimate users over a passive eavesdropper to further enhance secrecy of the communications. This advantage is manipulated by means of privacy amplification and encryption tools to achieve secrecy goals for the system evaluated based on information theoretic and cryptographic metrics. In our first work discussed in Chapter 2 and the third work explained in Chapter 4, we rely on a proactively established advantage for legitimate users based on eavesdropper’s lack of knowledge about a shared source of data. Unlike these works that assume an errorfree physical channel, in the second work discussed in Chapter 3 correlated erasure wiretap channel model is considered. This work relies on a passive and internally existing advantage for legitimate users that is built upon statistical and partial independence of eavesdropper’s channel errors from the errors in the main channel. We arrive at this secrecy advantage for legitimate users by exploitation of an authenticated but insecure feedback channel. From the perspective of the utilized tools, the first work discussed in Chapter 2 considers a specific scenario where secrecy enhancement of a particular block cipher called Data Encryption standard (DES) operating in cipher feedback mode (CFB) is studied. This secrecy enhancement is achieved by means of deliberate noise injection and wiretap channel encoding as a technique for privacy amplification against a resource constrained eavesdropper. Compared to the first work, the third work considers a more general framework in terms of both metrics and secrecy tools. This work studies secrecy enhancement of a general cipher based on universal hashing as a privacy amplification technique against an unbounded adversary. In this work, we have achieved the goal of exponential secrecy where information leakage to adversary, that is assessed in terms of mutual information as an information theoretic measure and Eve’s distinguishability as a cryptographic metric, decays at an exponential rate. In the second work generally encrypted data frames are transmitted through Automatic Repeat reQuest (ARQ) protocol to generate a common random source between legitimate users that later on is transformed into information theoretically secure keys for encryption by means of privacy amplification based on universal hashing. Towards the end, future works as an extension of the accomplished research in this dissertation are outlined. Proofs of major theorems and lemmas are presented in the Appendix

    EasySMS: a protocol for end to end secure transmission of SMS

    Get PDF
    Nowadays, short message service (SMS) is being used in many daily life applications, including healthcare monitoring, mobile banking, mobile commerce, and so on. But when we send an SMS from one mobile phone to another, the information contained in the SMS transmit as plain text. Sometimes this information may be confidential like account numbers, passwords, license numbers, and so on, and it is a major drawback to send such information through SMS while the traditional SMS service does not provide encryption to the information before its transmission. In this paper, we propose an efficient and secure protocol called EasySMS, which provides end-to-end secure communication through SMS between end users. The working of the protocol is presented by considering two different scenarios. The analysis of the proposed protocol shows that this protocol is able to prevent various attacks, including SMS disclosure, over the air modification, replay attack, man-in-the-middle attack, and impersonation attack. The EasySMS protocol generates minimum communication and computation overheads as compared with existing SMSSec and PK-SIM protocols. On an average, the EasySMS protocol reduces 51% and 31% of the bandwidth consumption and reduces 62% and 45% of message exchanged during the authentication process in comparison to SMSSec and PK-SIM protocols respectively. Authors claim that EasySMS is the first protocol completely based on the symmetric key cryptography and retain original architecture of cellular network

    Security of Ubiquitous Computing Systems

    Get PDF
    The chapters in this open access book arise out of the EU Cost Action project Cryptacus, the objective of which was to improve and adapt existent cryptanalysis methodologies and tools to the ubiquitous computing framework. The cryptanalysis implemented lies along four axes: cryptographic models, cryptanalysis of building blocks, hardware and software security engineering, and security assessment of real-world systems. The authors are top-class researchers in security and cryptography, and the contributions are of value to researchers and practitioners in these domains. This book is open access under a CC BY license

    Security of Ubiquitous Computing Systems

    Get PDF
    The chapters in this open access book arise out of the EU Cost Action project Cryptacus, the objective of which was to improve and adapt existent cryptanalysis methodologies and tools to the ubiquitous computing framework. The cryptanalysis implemented lies along four axes: cryptographic models, cryptanalysis of building blocks, hardware and software security engineering, and security assessment of real-world systems. The authors are top-class researchers in security and cryptography, and the contributions are of value to researchers and practitioners in these domains. This book is open access under a CC BY license

    Cellular Automata

    Get PDF
    Modelling and simulation are disciplines of major importance for science and engineering. There is no science without models, and simulation has nowadays become a very useful tool, sometimes unavoidable, for development of both science and engineering. The main attractive feature of cellular automata is that, in spite of their conceptual simplicity which allows an easiness of implementation for computer simulation, as a detailed and complete mathematical analysis in principle, they are able to exhibit a wide variety of amazingly complex behaviour. This feature of cellular automata has attracted the researchers' attention from a wide variety of divergent fields of the exact disciplines of science and engineering, but also of the social sciences, and sometimes beyond. The collective complex behaviour of numerous systems, which emerge from the interaction of a multitude of simple individuals, is being conveniently modelled and simulated with cellular automata for very different purposes. In this book, a number of innovative applications of cellular automata models in the fields of Quantum Computing, Materials Science, Cryptography and Coding, and Robotics and Image Processing are presented

    Big Data Security (Volume 3)

    Get PDF
    After a short description of the key concepts of big data the book explores on the secrecy and security threats posed especially by cloud based data storage. It delivers conceptual frameworks and models along with case studies of recent technology

    Design and implementation of a high-speed free-space quantum key distribution system for urban scenarios

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid. Facultad de Ciencias, Departamento de Física de Materiales. Fecha de lectura: 21-06-201

    Secure Coding Schemes and Code Design for the Wiretap Channel

    Get PDF
    corecore