45,520 research outputs found

    Green compressive sampling reconstruction in IoT networks

    Get PDF
    In this paper, we address the problem of green Compressed Sensing (CS) reconstruction within Internet of Things (IoT) networks, both in terms of computing architecture and reconstruction algorithms. The approach is novel since, unlike most of the literature dealing with energy efficient gathering of the CS measurements, we focus on the energy efficiency of the signal reconstruction stage given the CS measurements. As a first novel contribution, we present an analysis of the energy consumption within the IoT network under two computing architectures. In the first one, reconstruction takes place within the IoT network and the reconstructed data are encoded and transmitted out of the IoT network; in the second one, all the CS measurements are forwarded to off-network devices for reconstruction and storage, i.e., reconstruction is off-loaded. Our analysis shows that the two architectures significantly differ in terms of consumed energy, and it outlines a theoretically motivated criterion to select a green CS reconstruction computing architecture. Specifically, we present a suitable decision function to determine which architecture outperforms the other in terms of energy efficiency. The presented decision function depends on a few IoT network features, such as the network size, the sink connectivity, and other systems’ parameters. As a second novel contribution, we show how to overcome classical performance comparison of different CS reconstruction algorithms usually carried out w.r.t. the achieved accuracy. Specifically, we consider the consumed energy and analyze the energy vs. accuracy trade-off. The herein presented approach, jointly considering signal processing and IoT network issues, is a relevant contribution for designing green compressive sampling architectures in IoT networks

    Hardware acceleration architectures for MPEG-Based mobile video platforms: a brief overview

    Get PDF
    This paper presents a brief overview of past and current hardware acceleration (HwA) approaches that have been proposed for the most computationally intensive compression tools of the MPEG-4 standard. These approaches are classified based on their historical evolution and architectural approach. An analysis of both evolutionary and functional classifications is carried out in order to speculate on the possible trends of the HwA architectures to be employed in mobile video platforms

    A comparison of digital transmission techniques under multichannel conditions at 2.4 GHz in the ISM BAND

    Get PDF
    In order to meet the observation quality criteria of micro-UAVs, and particularly in the context of the « Trophée Micro-Drones », ISAE/SUPAERO is studying technical solutions to transmit a high data rate from a video payload onboard a micro-UAV. The laboratory has to consider the impact of multipath and shadowing effects on the emitted signal. Therefore fading resistant transmission techniques are considered. This techniques paper have to reveal an optimum trade-off between three parameters, namely: the characteristics of the video stream, the complexity of the modulation and coding scheme, and the efficiency of the transmission, in term of BER

    Optimal modeling for complex system design

    Get PDF
    The article begins with a brief introduction to the theory describing optimal data compression systems and their performance. A brief outline is then given of a representative algorithm that employs these lessons for optimal data compression system design. The implications of rate-distortion theory for practical data compression system design is then described, followed by a description of the tensions between theoretical optimality and system practicality and a discussion of common tools used in current algorithms to resolve these tensions. Next, the generalization of rate-distortion principles to the design of optimal collections of models is presented. The discussion focuses initially on data compression systems, but later widens to describe how rate-distortion theory principles generalize to model design for a wide variety of modeling applications. The article ends with a discussion of the performance benefits to be achieved using the multiple-model design algorithms
    corecore