502 research outputs found

    Neuroimaging of structural pathology and connectomics in traumatic brain injury: Toward personalized outcome prediction.

    Get PDF
    Recent contributions to the body of knowledge on traumatic brain injury (TBI) favor the view that multimodal neuroimaging using structural and functional magnetic resonance imaging (MRI and fMRI, respectively) as well as diffusion tensor imaging (DTI) has excellent potential to identify novel biomarkers and predictors of TBI outcome. This is particularly the case when such methods are appropriately combined with volumetric/morphometric analysis of brain structures and with the exploration of TBI-related changes in brain network properties at the level of the connectome. In this context, our present review summarizes recent developments on the roles of these two techniques in the search for novel structural neuroimaging biomarkers that have TBI outcome prognostication value. The themes being explored cover notable trends in this area of research, including (1) the role of advanced MRI processing methods in the analysis of structural pathology, (2) the use of brain connectomics and network analysis to identify outcome biomarkers, and (3) the application of multivariate statistics to predict outcome using neuroimaging metrics. The goal of the review is to draw the community's attention to these recent advances on TBI outcome prediction methods and to encourage the development of new methodologies whereby structural neuroimaging can be used to identify biomarkers of TBI outcome

    Prediction of post-stroke motor recovery benefits from measures of sub-acute widespread network damages.

    Get PDF
    Following a stroke in regions of the brain responsible for motor activity, patients can lose their ability to control parts of their body. Over time, some patients recover almost completely, while others barely recover at all. It is known that lesion volume, initial motor impairment and cortico-spinal tract asymmetry significantly impact motor changes over time. Recent work suggested that disabilities arise not only from focal structural changes but also from widespread alterations in inter-regional connectivity. Models that consider damage to the entire network instead of only local structural alterations lead to a more accurate prediction of patients' recovery. However, assessing white matter connections in stroke patients is challenging and time-consuming. Here, we evaluated in a data set of 37 patients whether we could predict upper extremity motor recovery from brain connectivity measures obtained by using the patient's lesion mask to introduce virtual lesions in 60 healthy streamline tractography connectomes. This indirect estimation of the stroke impact on the whole brain connectome is more readily available than direct measures of structural connectivity obtained with magnetic resonance imaging. We added these measures to benchmark structural features, and we used a ridge regression regularization to predict motor recovery at 3 months post-injury. As hypothesized, accuracy in prediction significantly increased (R 2 = 0.68) as compared to benchmark features (R 2 = 0.38). This improved prediction of recovery could be beneficial to clinical care and might allow for a better choice of intervention

    Methods and models for brain connectivity assessment across levels of consciousness

    Get PDF
    The human brain is one of the most complex and fascinating systems in nature. In the last decades, two events have boosted the investigation of its functional and structural properties. Firstly, the emergence of novel noninvasive neuroimaging modalities, which helped improving the spatial and temporal resolution of the data collected from in vivo human brains. Secondly, the development of advanced mathematical tools in network science and graph theory, which has recently translated into modeling the human brain as a network, giving rise to the area of research so called Brain Connectivity or Connectomics. In brain network models, nodes correspond to gray-matter regions (based on functional or structural, atlas-based parcellations that constitute a partition), while links or edges correspond either to structural connections as modeled based on white matter fiber-tracts or to the functional coupling between brain regions by computing statistical dependencies between measured brain activity from different nodes. Indeed, the network approach for studying the brain has several advantages: 1) it eases the study of collective behaviors and interactions between regions; 2) allows to map and study quantitative properties of its anatomical pathways; 3) gives measures to quantify integration and segregation of information processes in the brain, and the flow (i.e. the interacting dynamics) between different cortical and sub-cortical regions. The main contribution of my PhD work was indeed to develop and implement new models and methods for brain connectivity assessment in the human brain, having as primary application the analysis of neuroimaging data coming from subjects at different levels of consciousness. I have here applied these methods to investigate changes in levels of consciousness, from normal wakefulness (healthy human brains) or drug-induced unconsciousness (i.e. anesthesia) to pathological (i.e. patients with disorders of consciousness)

    Multimodal Neuroimaging-Informed Clinical Applications in Neuropsychiatric Disorders

    Get PDF
    Recent advances in neuroimaging data acquisition and analysis hold the promise to enhance the ability to make diagnostic and prognostic predictions and perform treatment planning in neuropsychiatric disorders. Prior research using a variety of types of neuroimaging techniques has confirmed that neuropsychiatric disorders are associated with dysfunction in anatomical and functional brain circuits. We first discuss current challenges associated with the identification of reliable neuroimaging markers for diagnosis and prognosis in mood disorders and for neurosurgical treatment planning for deep brain stimulation (DBS). We then present data on the use of neuroimaging for the diagnosis and prognosis of mood disorders and for DBS treatment planning. We demonstrate how multivariate analyses of functional activation and connectivity parameters can be used to differentiate patients with bipolar disorder from those with major depressive disorder and non-affective psychosis. We also present data on connectivity parameters that mediate acute treatment response in affective and non-affective psychosis. We then focus on precision mapping of functional connectivity in native space. We describe the benefits of integrating anatomical fiber reconstruction with brain functional parameters and cortical surface measures to derive anatomically-informed connectivity metrics within the morphological context of each individual brain. We discuss how this approach may be particularly promising in psychiatry, given the clinical and etiological heterogeneity of the disorders, and particularly in treatment response prediction and planning. Precision mapping of connectivity is essential for DBS. In DBS, treatment electrodes are inserted into positions near key grey matter nodes within the circuits considered relevant to disease expression. However, targeting white matter tracts that underpin connectivity within these circuits may increase treatment efficacy and tolerability therefore relevant for effective treatment. We demonstrate how this approach can be validated in the treatment of Parkinson’s disease by identifying connectivity patterns that can be used as biomarkers for treatment planning and thus refine the traditional approach of DBS planning that uses only grey matter landmarks. Finally we describe how this approach could be used in planning DBS treatment of psychiatric disorders

    Blending generative models with deep learning for multidimensional phenotypic prediction from brain connectivity data

    Get PDF
    Network science as a discipline has provided us with foundational machinery to study complex relational entities such as social networks, genomics, econometrics etc. The human brain is a complex network that has recently garnered immense interest within the data science community. Connectomics or the study of the underlying connectivity patterns in the brain has become an important field of study for the characterization of various neurological disorders such as Autism, Schizophrenia etc. Such connectomic studies have provided several fundamental insights into its intrinsic organisation and implications on our behavior and health. This thesis proposes a collection of mathematical models that are capable of fusing information from functional and structural connectivity with phenotypic information. Here, functional connectivity is measured by resting state functional MRI (rs-fMRI), while anatomical connectivity is captured using Diffusion Tensor Imaging (DTI). The phenotypic information of interest could refer to continuous measures of behavior or cognition, or may capture levels of impairment in the case of neuropsychiatric disorders. We first develop a joint network optimization framework to predict clinical severity from rs-fMRI connectivity matrices. This model couples two key terms into a unified optimization framework: a generative matrix factorization and a discriminative linear regression model. We demonstrate that the proposed joint inference strategy is successful in generalizing to prediction of impairments in Autism Spectrum Disorder (ASD) when compared with several machine learning, graph theoretic and statistical baselines. At the same time, the model is capable of extracting functional brain biomarkers that are informative of individual measures of clinical severity. We then present two modeling extensions to non-parametric and neural network regression models that are coupled with the same generative framework. Building on these general principles, we extend our framework to incorporate multimodal information from Diffusion Tensor Imaging (DTI) and dynamic functional connectivity. At a high level, our generative matrix factorization now estimates a time-varying functional decomposition. At the same time, it is guided by anatomical connectivity priors in a graph-based regularization setup. This connectivity model is coupled with a deep network that predicts multidimensional clinical characterizations and models the temporal dynamics of the functional scan. This framework allows us to simultaneously explain multiple impairments, isolate stable multi-modal connectivity signatures, and study the evolution of various brain states at rest. Lastly, we shift our focus to end-to-end geometric frameworks. These are designed to characterize the complementarity between functional and structural connectivity data spaces, while using clinical information as a secondary guide. As an alternative to the previous generative framework for functional connectivity, our representation learning scheme of choice is a matrix autoencoder that is crafted to reflect the underlying data geometry. This is coupled with a manifold alignment model that maps from function to structure and a deep network that maps to phenotypic information. We demonstrate that the model reliably recovers structural connectivity patterns across individuals, while robustly extracting predictive yet interpretable brain biomarkers. Finally, we also present a preliminary analytical and experimental exposition on the theoretical aspects of the matrix autoencoder representation

    White matter connectomes at birth accurately predict cognitive abilities at age 2

    Get PDF
    Cognitive ability is an important predictor of mental health outcomes that is influenced by neurodevelopment. Evidence suggests that the foundational wiring of the human brain is in place by birth, and that the white matter (WM) connectome supports developing brain function. It is unknown, however, how the WM connectome at birth supports emergent cognition. In this study, a deep learning model was trained using cross-validation to classify full-term infants (n = 75) as scoring above or below the median at age 2 using WM connectomes generated from diffusion weighted magnetic resonance images at birth. Results from this model were used to predict individual cognitive scores. We additionally identified WM connections important for classification. The model was also evaluated in a separate set of preterm infants (n = 37) scanned at term-age equivalent. Findings revealed that WM connectomes at birth predicted 2-year cognitive score group with high accuracy in both full-term (89.5%) and preterm (83.8%) infants. Scores predicted by the model were strongly correlated with actual scores (r = 0.98 for full-term and r = 0.96 for preterm). Connections within the frontal lobe, and between the frontal lobe and other brain areas were found to be important for classification. This work suggests that WM connectomes at birth can accurately predict a child's 2-year cognitive group and individual score in full-term and preterm infants. The WM connectome at birth appears to be a useful neuroimaging biomarker of subsequent cognitive development that deserves further study

    Data-Driven Sequence of Changes to Anatomical Brain Connectivity in Sporadic Alzheimer's Disease

    Get PDF
    Model-based investigations of transneuronal spreading mechanisms in neurodegenerative diseases relate the pattern of pathology severity to the brain’s connectivity matrix, which reveals information about how pathology propagates through the connectivity network. Such network models typically use networks based on functional or structural connectivity in young and healthy individuals, and only end-stage patterns of pathology, thereby ignoring/excluding the effects of normal aging and disease progression. Here, we examine the sequence of changes in the elderly brain’s anatomical connectivity over the course of a neurodegenerative disease. We do this in a data-driven manner that is not dependent upon clinical disease stage, by using event-based disease progression modeling. Using data from the Alzheimer’s Disease Neuroimaging Initiative dataset, we sequence the progressive decline of anatomical connectivity, as quantified by graph-theory metrics, in the Alzheimer’s disease brain. Ours is the first single model to contribute to understanding all three of the nature, the location, and the sequence of changes to anatomical connectivity in the human brain due to Alzheimer’s disease. Our experimental results reveal new insights into Alzheimer’s disease: that degeneration of anatomical connectivity in the brain may be a viable, even early, biomarker and should be considered when studying such neurodegenerative diseases
    • …
    corecore