43 research outputs found

    Active safety systems for powered two-wheelers: A systematic review

    Get PDF
    Objective: Active safety systems, of which antilock braking is a prominent example, are going to play an important role to improve powered two-wheeler (PTW) safety. This paper presents a systematic review of the scientific literature on active safety for PTWs. The aim was to list all systems under development, identify knowledge gaps and recognize promising research areas that require further efforts. Methods: A broad search using "safety" as the main keyword was performed on Scopus, Web of Science and Google Scholar, followed by manual screening to identify eligible papers that underwent a full-text review. Finally, the selected papers were grouped by general technology type and analyzed via structured form to identify the following: specific active safety system, study type, outcome type, population/sample where applicable, and overall findings. Results: Of the 8,000 papers identified with the initial search, 85 were selected for full-text review and 62 were finally included in the study, of which 34 were journal papers. The general technology types identified included antilock braking system, autonomous emergency braking, collision avoidance, intersection support, intelligent transportation systems, curve warning, human machine interface systems, stability control, traction control, and vision assistance. Approximately one third of the studies considered the design and early stage testing of safety systems (n. 22); almost one fourth (n.15) included evaluations of system effectiveness. Conclusions: Our systematic review shows that a multiplicity of active safety systems for PTWs were examined in the scientific literature, but the levels of development are diverse. A few systems are currently available in the series production, whereas other systems are still at the level of early-stage prototypes. Safety benefit assessments were conducted for single systems, however, organized comparisons between systems that may inform the prioritization of future research are lacking. Another area of future analysis is on the combined effects of different safety systems, that may be capitalized for better performance and to maximize the safety impact of new technologies

    Electric Vehicle Efficient Power and Propulsion Systems

    Get PDF
    Vehicle electrification has been identified as one of the main technology trends in this second decade of the 21st century. Nearly 10% of global car sales in 2021 were electric, and this figure would be 50% by 2030 to reduce the oil import dependency and transport emissions in line with countries’ climate goals. This book addresses the efficient power and propulsion systems which cover essential topics for research and development on EVs, HEVs and fuel cell electric vehicles (FCEV), including: Energy storage systems (battery, fuel cell, supercapacitors, and their hybrid systems); Power electronics devices and converters; Electric machine drive control, optimization, and design; Energy system advanced management methods Primarily intended for professionals and advanced students who are working on EV/HEV/FCEV power and propulsion systems, this edited book surveys state of the art novel control/optimization techniques for different components, as well as for vehicle as a whole system. New readers may also find valuable information on the structure and methodologies in such an interdisciplinary field. Contributed by experienced authors from different research laboratory around the world, these 11 chapters provide balanced materials from theorical background to methodologies and practical implementation to deal with various issues of this challenging technology. This reprint encourages researchers working in this field to stay actualized on the latest developments on electric vehicle efficient power and propulsion systems, for road and rail, both manned and unmanned vehicles

    Road Geometry and Steering Reconstruction for Powered Two Wheeled Vehicles

    Get PDF
    International audienceThis paper deals with the estimation of both motorcycle lateral dynamics and road geometry reconstruction. A linear parameter varying (LPV) unknown input observer is designed to estimate the whole motorcycle dynamic states including road banking angles and the rider's steering torque taken into account the variation of the forward velocity. The road bank angle and the lateral slip angle are relevant parameters for improving rider's safety and handling, thus, it is interesting to estimate the road geometry. The observer convergence study is based on Lyapunov theory and the established convergence conditions are expressed in linear matrix inequalities (LMIs) formalism. The main idea consists in getting a set of conditions to design an observer transformed into a polytopic form, which estimates a part of the motorcycle dynamics states independently of some inputs (rider torque) and/or other states (zeros dynamics: roll angle) taken into account the variation of the longitudinal velocity

    Optimal control of a motor-integrated hybrid powertrain for a two-wheeled vehicle suitable for personal transportation

    Get PDF
    The present research aims to propose an optimized configuration of the motor integrated power-train with an optimal controller suitable for small power-train based two wheeler automobile which can increase the system level efficiency without affecting drivability. This work will be the foundation for realizing the system in a production ready vehicle for the two wheeler OEM TVS Motor Company in India. A detailed power-train model is developed (from first principles) for the scooter vehicle, which is powered by a 110 cc spark ignition (SI) engine and coupled with two types of transmission, a continuous variable transmission (CVT) and a 4-speed manual transmission (MT). Both models are capable of simulating torque and NOx emission output of the SI engine and dynamic response of the full power-train. The torque production and emission outputs of the model are compared with experimental results available from TVS Motor Company. The CVT gear ratio model is developed using an indirect method and an analytical model. Both types of powertrain models are applied to perform a simulated study of fuel consumption, NOx emission and drivability study for a particular vehicle platform. In the next stage of work, the mathematical model for a brush-less direct current machine (BLDC) with the drive system and Li-Ion battery are developed. The models are verified and calibrated with the experimental results from TVS Motor Company. The BLDC machine is integrated with both the CVT and MT powertrain models in parallel hybrid configurations and a drive cycle simulation is conducted for different static assist levels by the electrical machines. The initial test confirms the need of optimal sizing of the powertrain components as well as an optimal control system. The detailed model of the powertrain is converted to a control-oriented model which is suitable for optimal control. This is followed by multi-objective optimization of different components of the motor-integrated powertrain using a single function as well as Pareto-Optimal methods. The objective function for the multi-objective optimization is proposed to reduce the fuel consumption with battery charge sustainability with least impact on the increase of financial cost and weight of the vehicle. The optimization is conducted by a nested methodology that involves Particle Swarm Optimization and a Non-dominated sorting genetic algorithm where, concurrently, a global optimal control is developed corresponding to the multi-objective design. The global optimal controller is designed using dynamic programming. The research is concluded with an optimal controller developed using the hp-collocation method. The objective function of the dynamic programming method and hp-collocation method is proposed to reduce fuel consumption with battery charge sustainability.Open Acces

    Brake Steer Torque Optimized Corner Braking of Motorcycles

    Get PDF
    This thesis deals with the Brake Steer Torque (BST) induced stand-up tendency of Powered Two Wheelers (PTW) and measures to lower the associated risk for running wide on curve accidents with sudden, unforeseen braking. Focus is set on the BST Avoidance Mechanism (BSTAM), a chassis design that eliminates the BST through lateral inclination of the kinematic steering axis. A simple mathematical model is used to identify its main influences on the driving behavior and derive an optimized system layout. Its theoretical potential is evaluated against the standard chassis using different cornering adaptive brake force distributions and riding styles. For the first time ever, a motorcycle with state-of-the-art brake system (Honda CBR 600 RR, C-ABS) is equipped with a BSTAM and tested in corner braking experiments. Compared to the baseline, it is significantly reducing BST related disturbances and improving directional control. The gained insights can be stepping stones to enhance PTW safety by enabling future assistance systems with autonomous corner braking

    New trends in electrical vehicle powertrains

    Get PDF
    The electric vehicle and plug-in hybrid electric vehicle play a fundamental role in the forthcoming new paradigms of mobility and energy models. The electrification of the transport sector would lead to advantages in terms of energy efficiency and reduction of greenhouse gas emissions, but would also be a great opportunity for the introduction of renewable sources in the electricity sector. The chapters in this book show a diversity of current and new developments in the electrification of the transport sector seen from the electric vehicle point of view: first, the related technologies with design, control and supervision, second, the powertrain electric motor efficiency and reliability and, third, the deployment issues regarding renewable sources integration and charging facilities. This is precisely the purpose of this book, that is, to contribute to the literature about current research and development activities related to new trends in electric vehicle power trains.Peer ReviewedPostprint (author's final draft

    Advances in Mechanical Systems Dynamics 2020

    Get PDF
    The fundamentals of mechanical system dynamics were established before the beginning of the industrial era. The 18th century was a very important time for science and was characterized by the development of classical mechanics. This development progressed in the 19th century, and new, important applications related to industrialization were found and studied. The development of computers in the 20th century revolutionized mechanical system dynamics owing to the development of numerical simulation. We are now in the presence of the fourth industrial revolution. Mechanical systems are increasingly integrated with electrical, fluidic, and electronic systems, and the industrial environment has become characterized by the cyber-physical systems of industry 4.0. Within this framework, the status-of-the-art has become represented by integrated mechanical systems and supported by accurate dynamic models able to predict their dynamic behavior. Therefore, mechanical systems dynamics will play a central role in forthcoming years. This Special Issue aims to disseminate the latest research findings and ideas in the field of mechanical systems dynamics, with particular emphasis on novel trends and applications

    Design, modelling, and fabrication of a ferrite magnet axial flux in-wheel motor

    Get PDF

    A review on power electronics technologies for electric mobility

    Get PDF
    Concerns about greenhouse gas emissions are a key topic addressed by modern societies worldwide. As a contribution to mitigate such effects caused by the transportation sector, the full adoption of electric mobility is increasingly being seen as the main alternative to conventional internal combustion engine (ICE) vehicles, which is supported by positive industry indicators, despite some identified hurdles. For such objective, power electronics technologies play an essential role and can be contextualized in different purposes to support the full adoption of electric mobility, including on-board and off-board battery charging systems, inductive wireless charging systems, unified traction and charging systems, new topologies with innovative operation modes for supporting the electrical power grid, and innovative solutions for electrified railways. Embracing all of these aspects, this paper presents a review on power electronics technologies for electric mobility where some of the main technologies and power electronics topologies are presented and explained. In order to address a broad scope of technologies, this paper covers road vehicles, lightweight vehicles and railway vehicles, among other electric vehicles.This work has been supported by FCT – Fundação para a Ciência e Tecnologia with-in the Project Scope: UID/CEC/00319/2020. This work has been supported by the FCT Project DAIPESEV PTDC/EEI-EEE/30382/2017, and by the FCT Project new ERA4GRIDs PTDC/EEI-EEE/30283/2017. Tiago Sousa is supported by the doctoral scholarship SFRH/BD/134353/2017 granted by FCT
    corecore