1,140 research outputs found

    Tractable Querying and Learning in Hybrid Domains via Sum-Product Networks

    Get PDF
    Probabilistic representations, such as Bayesian and Markov networks, are fundamental to much of statistical machine learning. Thus, learning probabilistic representations directly from data is a deep challenge, the main computational bottleneck being inference that is intractable. Tractable learning is a powerful new paradigm that attempts to learn distributions that support efficient probabilistic querying. By leveraging local structure, representations such as sum-product networks (SPNs) can capture high tree-width models with many hidden layers, essentially a deep architecture, while still admitting a range of probabilistic queries to be computable in time polynomial in the network size. The leaf nodes in SPNs, from which more intricate mixtures are formed, are tractable univariate distributions, and so the literature has focused on Bernoulli and Gaussian random variables. This is clearly a restriction for handling mixed discrete-continuous data, especially if the continuous features are generated from non-parametric and non-Gaussian distribution families. In this work, we present a framework that systematically integrates SPN structure learning with weighted model integration, a recently introduced computational abstraction for performing inference in hybrid domains, by means of piecewise polynomial approximations of density functions of arbitrary shape. Our framework is instantiated by exploiting the notion of propositional abstractions, thus minimally interfering with the SPN structure learning module, and supports a powerful query interface for conditioning on interval constraints. Our empirical results show that our approach is effective, and allows a study of the trade off between the granularity of the learned model and its predictive power.Comment: Accepted at the 2018 KR Workshop on Hybrid Reasoning and Learnin

    Learning Credal Sum-Product Networks

    Get PDF
    Probabilistic representations, such as Bayesian and Markov networks, are fundamental to much of statistical machine learning. Thus, learning probabilistic representations directly from data is a deep challenge, the main computational bottleneck being inference that is intractable. Tractable learning is a powerful new paradigm that attempts to learn distributions that support efficient probabilistic querying. By leveraging local structure, representations such as sum-product networks (SPNs) can capture high tree-width models with many hidden layers, essentially a deep architecture, while still admitting a range of probabilistic queries to be computable in time polynomial in the network size. While the progress is impressive, numerous data sources are incomplete, and in the presence of missing data, structure learning methods nonetheless revert to single distributions without characterizing the loss in confidence. In recent work, credal sum-product networks, an imprecise extension of sum-product networks, were proposed to capture this robustness angle. In this work, we are interested in how such representations can be learnt and thus study how the computational machinery underlying tractable learning and inference can be generalized for imprecise probabilities.Comment: Accepted to AKBC 202

    Scaling up Probabilistic Inference in Linear and Non-Linear Hybrid Domains by Leveraging Knowledge Compilation.

    Get PDF
    Weighted model integration (WMI) extends weighted model counting (WMC) in providing a computational abstraction for probabilistic inference in mixed discrete-continuous domains. WMC has emerged as an assembly language for state-of-the-art reasoning in Bayesian networks, factor graphs, probabilistic programs and probabilistic databases. In this regard, WMI shows immense promise to be much more widely applicable, especially as many real-world applications involve attribute and feature spaces that are continuous and mixed. Nonetheless, state-of-the-art tools for WMI are limited and less mature than their propositional counterparts. In this work, we propose a new implementation regime that leverages propositional knowledge compilation for scaling up inference. In particular, we use sentential decision diagrams, a tractable representation of Boolean functions, as the underlying model counting and model enumeration scheme. Our regime performs competitively to state-of-the-art WMI systems but is also shown to handle a specific class of non-linear constraints over non-linear potentials.Comment: In proceedings of ICAART, 2020. A version also appears in AAAI Workshop: Statistical Relational Artificial Intelligence (StarAI), 202

    Symbolic Logic meets Machine Learning: A Brief Survey in Infinite Domains

    Get PDF
    The tension between deduction and induction is perhaps the most fundamental issue in areas such as philosophy, cognition and artificial intelligence (AI). The deduction camp concerns itself with questions about the expressiveness of formal languages for capturing knowledge about the world, together with proof systems for reasoning from such knowledge bases. The learning camp attempts to generalize from examples about partial descriptions about the world. In AI, historically, these camps have loosely divided the development of the field, but advances in cross-over areas such as statistical relational learning, neuro-symbolic systems, and high-level control have illustrated that the dichotomy is not very constructive, and perhaps even ill-formed. In this article, we survey work that provides further evidence for the connections between logic and learning. Our narrative is structured in terms of three strands: logic versus learning, machine learning for logic, and logic for machine learning, but naturally, there is considerable overlap. We place an emphasis on the following "sore" point: there is a common misconception that logic is for discrete properties, whereas probability theory and machine learning, more generally, is for continuous properties. We report on results that challenge this view on the limitations of logic, and expose the role that logic can play for learning in infinite domains

    Fairness in Machine Learning with Tractable Models

    Get PDF
    Machine Learning techniques have become pervasive across a range of different applications, and are now widely used in areas as disparate as recidivism prediction, consumer credit-risk analysis and insurance pricing. The prevalence of machine learning techniques has raised concerns about the potential for learned algorithms to become biased against certain groups. Many definitions have been proposed in the literature, but the fundamental task of reasoning about probabilistic events is a challenging one, owing to the intractability of inference. The focus of this paper is taking steps towards the application of tractable models to fairness. Tractable probabilistic models have emerged that guarantee that conditional marginal can be computed in time linear in the size of the model. In particular, we show that sum product networks (SPNs) enable an effective technique for determining the statistical relationships between protected attributes and other training variables. If a subset of these training variables are found by the SPN to be independent of the training attribute then they can be considered `safe' variables, from which we can train a classification model without concern that the resulting classifier will result in disparate outcomes for different demographic groups. Our initial experiments on the `German Credit' data set indicate that this processing technique significantly reduces disparate treatment of male and female credit applicants, with a small reduction in classification accuracy compared to state of the art. We will also motivate the concept of "fairness through percentile equivalence", a new definition predicated on the notion that individuals at the same percentile of their respective distributions should be treated equivalently, and this prevents unfair penalisation of those individuals who lie at the extremities of their respective distributions.Comment: In AAAI Workshop: Statistical Relational Artificial Intelligence (StarAI), 2020. (This is the extended version.
    • …
    corecore