3,308 research outputs found

    Challenges for Efficient Query Evaluation on Structured Probabilistic Data

    Full text link
    Query answering over probabilistic data is an important task but is generally intractable. However, a new approach for this problem has recently been proposed, based on structural decompositions of input databases, following, e.g., tree decompositions. This paper presents a vision for a database management system for probabilistic data built following this structural approach. We review our existing and ongoing work on this topic and highlight many theoretical and practical challenges that remain to be addressed.Comment: 9 pages, 1 figure, 23 references. Accepted for publication at SUM 201

    Ontology-Based Data Access and Integration

    Get PDF
    An ontology-based data integration (OBDI) system is an information management system consisting of three components: an ontology, a set of data sources, and the mapping between the two. The ontology is a conceptual, formal description of the domain of interest to a given organization (or a community of users), expressed in terms of relevant concepts, attributes of concepts, relationships between concepts, and logical assertions characterizing the domain knowledge. The data sources are the repositories accessible by the organization where data concerning the domain are stored. In the general case, such repositories are numerous, heterogeneous, each one managed and maintained independently from the others. The mapping is a precise specification of the correspondence between the data contained in the data sources and the elements of the ontology. The main purpose of an OBDI system is to allow information consumers to query the data using the elements in the ontology as predicates. In the special case where the organization manages a single data source, the term ontology-based data access (ODBA) system is used

    Using Ontologies for Semantic Data Integration

    Get PDF
    While big data analytics is considered as one of the most important paths to competitive advantage of today’s enterprises, data scientists spend a comparatively large amount of time in the data preparation and data integration phase of a big data project. This shows that data integration is still a major challenge in IT applications. Over the past two decades, the idea of using semantics for data integration has become increasingly crucial, and has received much attention in the AI, database, web, and data mining communities. Here, we focus on a specific paradigm for semantic data integration, called Ontology-Based Data Access (OBDA). The goal of this paper is to provide an overview of OBDA, pointing out both the techniques that are at the basis of the paradigm, and the main challenges that remain to be addressed

    A Trichotomy for Regular Trail Queries

    Get PDF
    Regular path queries (RPQs) are an essential component of graph query languages. Such queries consider a regular expression r and a directed edge-labeled graph G and search for paths in G for which the sequence of labels is in the language of r. In order to avoid having to consider infinitely many paths, some database engines restrict such paths to be trails, that is, they only consider paths without repeated edges. In this paper we consider the evaluation problem for RPQs under trail semantics, in the case where the expression is fixed. We show that, in this setting, there exists a trichotomy. More precisely, the complexity of RPQ evaluation divides the regular languages into the finite languages, the class T_tract (for which the problem is tractable), and the rest. Interestingly, the tractable class in the trichotomy is larger than for the trichotomy for simple paths, discovered by Bagan et al. [Bagan et al., 2013]. In addition to this trichotomy result, we also study characterizations of the tractable class, its expressivity, the recognition problem, closure properties, and show how the decision problem can be extended to the enumeration problem, which is relevant to practice

    A Goal-Directed Implementation of Query Answering for Hybrid MKNF Knowledge Bases

    Full text link
    Ontologies and rules are usually loosely coupled in knowledge representation formalisms. In fact, ontologies use open-world reasoning while the leading semantics for rules use non-monotonic, closed-world reasoning. One exception is the tightly-coupled framework of Minimal Knowledge and Negation as Failure (MKNF), which allows statements about individuals to be jointly derived via entailment from an ontology and inferences from rules. Nonetheless, the practical usefulness of MKNF has not always been clear, although recent work has formalized a general resolution-based method for querying MKNF when rules are taken to have the well-founded semantics, and the ontology is modeled by a general oracle. That work leaves open what algorithms should be used to relate the entailments of the ontology and the inferences of rules. In this paper we provide such algorithms, and describe the implementation of a query-driven system, CDF-Rules, for hybrid knowledge bases combining both (non-monotonic) rules under the well-founded semantics and a (monotonic) ontology, represented by a CDF Type-1 (ALQ) theory. To appear in Theory and Practice of Logic Programming (TPLP

    The relationship between IR and multimedia databases

    Get PDF
    Modern extensible database systems support multimedia data through ADTs. However, because of the problems with multimedia query formulation, this support is not sufficient.\ud \ud Multimedia querying requires an iterative search process involving many different representations of the objects in the database. The support that is needed is very similar to the processes in information retrieval.\ud \ud Based on this observation, we develop the miRRor architecture for multimedia query processing. We design a layered framework based on information retrieval techniques, to provide a usable query interface to the multimedia database.\ud \ud First, we introduce a concept layer to enable reasoning over low-level concepts in the database.\ud \ud Second, we add an evidential reasoning layer as an intermediate between the user and the concept layer.\ud \ud Third, we add the functionality to process the users' relevance feedback.\ud \ud We then adapt the inference network model from text retrieval to an evidential reasoning model for multimedia query processing.\ud \ud We conclude with an outline for implementation of miRRor on top of the Monet extensible database system

    Inconsistency-tolerant Query Answering in Ontology-based Data Access

    Get PDF
    Ontology-based data access (OBDA) is receiving great attention as a new paradigm for managing information systems through semantic technologies. According to this paradigm, a Description Logic ontology provides an abstract and formal representation of the domain of interest to the information system, and is used as a sophisticated schema for accessing the data and formulating queries over them. In this paper, we address the problem of dealing with inconsistencies in OBDA. Our general goal is both to study DL semantical frameworks that are inconsistency-tolerant, and to devise techniques for answering unions of conjunctive queries under such inconsistency-tolerant semantics. Our work is inspired by the approaches to consistent query answering in databases, which are based on the idea of living with inconsistencies in the database, but trying to obtain only consistent information during query answering, by relying on the notion of database repair. We first adapt the notion of database repair to our context, and show that, according to such a notion, inconsistency-tolerant query answering is intractable, even for very simple DLs. Therefore, we propose a different repair-based semantics, with the goal of reaching a good compromise between the expressive power of the semantics and the computational complexity of inconsistency-tolerant query answering. Indeed, we show that query answering under the new semantics is first-order rewritable in OBDA, even if the ontology is expressed in one of the most expressive members of the DL-Lite family

    Semantic Storage: Overview and Assessment

    No full text
    The Semantic Web has a great deal of momentum behind it. The promise of a ‘better web’, where information is given well defined meaning and computers are better able to work with it has captured the imagination of a significant number of people, particularly in academia. Language standards such as RDF and OWL have appeared with remarkable speed, and development continues apace. To back up this development, there is a requirement for ‘semantic databases’, where this data can be conveniently stored, operated upon, and retrieved. These already exist in the form of triple stores, but do not yet fulfil all the requirements that may be made of them, particularly in the area of performing inference using OWL. This paper analyses the current stores along with forthcoming technology, and finds that it is unlikely that a combination of speed, scalability, and complex inferencing will be practical in the immediate future. It concludes by suggesting alternative development routes
    • 

    corecore