12,587 research outputs found

    A Deep-structured Conditional Random Field Model for Object Silhouette Tracking

    Full text link
    In this work, we introduce a deep-structured conditional random field (DS-CRF) model for the purpose of state-based object silhouette tracking. The proposed DS-CRF model consists of a series of state layers, where each state layer spatially characterizes the object silhouette at a particular point in time. The interactions between adjacent state layers are established by inter-layer connectivity dynamically determined based on inter-frame optical flow. By incorporate both spatial and temporal context in a dynamic fashion within such a deep-structured probabilistic graphical model, the proposed DS-CRF model allows us to develop a framework that can accurately and efficiently track object silhouettes that can change greatly over time, as well as under different situations such as occlusion and multiple targets within the scene. Experiment results using video surveillance datasets containing different scenarios such as occlusion and multiple targets showed that the proposed DS-CRF approach provides strong object silhouette tracking performance when compared to baseline methods such as mean-shift tracking, as well as state-of-the-art methods such as context tracking and boosted particle filtering.Comment: 17 page

    Automatic Feature-Based Stabilization of Video with Intentional Motion through a Particle Filter

    Get PDF
    Video sequences acquired by a camera mounted on a hand held device or a mobile platform are affected by unwanted shakes and jitters. In this situation, the performance of video applications, such us motion segmentation and tracking, might dramatically be decreased. Several digital video stabilization approaches have been proposed to overcome this problem. However, they are mainly based on motion estimation techniques that are prone to errors, and thus affecting the stabilization performance. On the other hand, these techniques can only obtain a successfully stabilization if the intentional camera motion is smooth, since they incorrectly filter abrupt changes in the intentional motion. In this paper a novel video stabilization technique that overcomes the aforementioned problems is presented. The motion is estimated by means of a sophisticated feature-based technique that is robust to errors, which could bias the estimation. The unwanted camera motion is filtered, while the intentional motion is successfully preserved thanks to a Particle Filter framework that is able to deal with abrupt changes in the intentional motion. The obtained results confirm the effectiveness of the proposed algorith

    Vehicle detection and tracking using homography-based plane rectification and particle filtering

    Get PDF
    This paper presents a full system for vehicle detection and tracking in non-stationary settings based on computer vision. The method proposed for vehicle detection exploits the geometrical relations between the elements in the scene so that moving objects (i.e., vehicles) can be detected by analyzing motion parallax. Namely, the homography of the road plane between successive images is computed. Most remarkably, a novel probabilistic framework based on Kalman filtering is presented for reliable and accurate homography estimation. The estimated homography is used for image alignment, which in turn allows to detect the moving vehicles in the image. Tracking of vehicles is performed on the basis of a multidimensional particle filter, which also manages the exit and entries of objects. The filter involves a mixture likelihood model that allows a better adaptation of the particles to the observed measurements. The system is specially designed for highway environments, where it has been proven to yield excellent results

    Sparse optical flow regularisation for real-time visual tracking

    Get PDF
    Optical flow can greatly improve the robustness of visual tracking algorithms. While dense optical flow algorithms have various applications, they can not be used for real-time solutions without resorting to GPU calculations. Furthermore, most optical flow algorithms fail in challenging lighting environments due to the violation of the brightness constraint. We propose a simple but effective iterative regularisation scheme for real-time, sparse optical flow algorithms, that is shown to be robust to sudden illumination changes and can handle large displacements. The algorithm proves to outperform well known techniques in real life video sequences, while being much faster to calculate. Our solution increases the robustness of a real-time particle filter based tracking application, consuming only a fraction of the available CPU power. Furthermore, a new and realistic optical flow dataset with annotated ground truth is created and made freely available for research purposes

    Video analysis based vehicle detection and tracking using an MCMC sampling framework

    Full text link
    This article presents a probabilistic method for vehicle detection and tracking through the analysis of monocular images obtained from a vehicle-mounted camera. The method is designed to address the main shortcomings of traditional particle filtering approaches, namely Bayesian methods based on importance sampling, for use in traffic environments. These methods do not scale well when the dimensionality of the feature space grows, which creates significant limitations when tracking multiple objects. Alternatively, the proposed method is based on a Markov chain Monte Carlo (MCMC) approach, which allows efficient sampling of the feature space. The method involves important contributions in both the motion and the observation models of the tracker. Indeed, as opposed to particle filter-based tracking methods in the literature, which typically resort to observation models based on appearance or template matching, in this study a likelihood model that combines appearance analysis with information from motion parallax is introduced. Regarding the motion model, a new interaction treatment is defined based on Markov random fields (MRF) that allows for the handling of possible inter-dependencies in vehicle trajectories. As for vehicle detection, the method relies on a supervised classification stage using support vector machines (SVM). The contribution in this field is twofold. First, a new descriptor based on the analysis of gradient orientations in concentric rectangles is dened. This descriptor involves a much smaller feature space compared to traditional descriptors, which are too costly for real-time applications. Second, a new vehicle image database is generated to train the SVM and made public. The proposed vehicle detection and tracking method is proven to outperform existing methods and to successfully handle challenging situations in the test sequences

    Particle detection and tracking in fluorescence time-lapse imaging: a contrario approach

    Full text link
    This paper proposes a probabilistic approach for the detection and the tracking of particles in fluorescent time-lapse imaging. In the presence of a very noised and poor-quality data, particles and trajectories can be characterized by an a contrario model, that estimates the probability of observing the structures of interest in random data. This approach, first introduced in the modeling of human visual perception and then successfully applied in many image processing tasks, leads to algorithms that neither require a previous learning stage, nor a tedious parameter tuning and are very robust to noise. Comparative evaluations against a well-established baseline show that the proposed approach outperforms the state of the art.Comment: Published in Journal of Machine Vision and Application

    Bags of Affine Subspaces for Robust Object Tracking

    Full text link
    We propose an adaptive tracking algorithm where the object is modelled as a continuously updated bag of affine subspaces, with each subspace constructed from the object's appearance over several consecutive frames. In contrast to linear subspaces, affine subspaces explicitly model the origin of subspaces. Furthermore, instead of using a brittle point-to-subspace distance during the search for the object in a new frame, we propose to use a subspace-to-subspace distance by representing candidate image areas also as affine subspaces. Distances between subspaces are then obtained by exploiting the non-Euclidean geometry of Grassmann manifolds. Experiments on challenging videos (containing object occlusions, deformations, as well as variations in pose and illumination) indicate that the proposed method achieves higher tracking accuracy than several recent discriminative trackers.Comment: in International Conference on Digital Image Computing: Techniques and Applications, 201
    corecore