5,866 research outputs found

    Longitudinal imaging of microvascular remodelling in proliferative diabetic retinopathy using adaptive optics scanning light ophthalmoscopy

    Get PDF
    Purpose To characterise longitudinal changes in the retinal microvasculature of type 2 diabetes mellitus (T2DM) as exemplified in a patient with proliferative diabetic retinopathy (PDR) using an adaptive optics scanning light ophthalmoscope (AOSLO). Methods A 35-year-old T2DM patient with PDR treated with scatter pan-retinal photocoagulation at the inferior retina 1 day prior to initial AOSLO imaging along with a 24-year-old healthy control were imaged in this study. AOSLO vascular structural and perfusion maps were acquired at four visits over a 20-week period. Capillary diameter and microaneurysm area changes were measured on the AOSLO structural maps. Imaging repeatability was established using longitudinal imaging of microvasculature in the healthy control. Results Capillary occlusion and recanalisation, capillary dilatation, resolution of local retinal haemorrhage, capillary hairpin formation, capillary bend formation, microaneurysm formation, progression and regression were documented over time in a region 2° superior to the fovea in the PDR patient. An identical microvascular network with same capillary diameter was observed in the control subject over time. Conclusions High-resolution serial AOSLO imaging enables in vivo observation of vasculopathic changes seen in diabetes mellitus. The implications of this methodology are significant, providing the opportunity for studying the dynamics of the pathological process, as well as the possibility of identifying highly sensitive and non-invasive biomarkers of end organ damage and response to treatment

    Revealing hidden scenes by photon-efficient occlusion-based opportunistic active imaging

    Full text link
    The ability to see around corners, i.e., recover details of a hidden scene from its reflections in the surrounding environment, is of considerable interest in a wide range of applications. However, the diffuse nature of light reflected from typical surfaces leads to mixing of spatial information in the collected light, precluding useful scene reconstruction. Here, we employ a computational imaging technique that opportunistically exploits the presence of occluding objects, which obstruct probe-light propagation in the hidden scene, to undo the mixing and greatly improve scene recovery. Importantly, our technique obviates the need for the ultrafast time-of-flight measurements employed by most previous approaches to hidden-scene imaging. Moreover, it does so in a photon-efficient manner based on an accurate forward model and a computational algorithm that, together, respect the physics of three-bounce light propagation and single-photon detection. Using our methodology, we demonstrate reconstruction of hidden-surface reflectivity patterns in a meter-scale environment from non-time-resolved measurements. Ultimately, our technique represents an instance of a rich and promising new imaging modality with important potential implications for imaging science.Comment: Related theory in arXiv:1711.0629

    An optically actuated surface scanning probe

    Get PDF
    We demonstrate the use of an extended, optically trapped probe that is capable of imaging surface topography with nanometre precision, whilst applying ultra-low, femto-Newton sized forces. This degree of precision and sensitivity is acquired through three distinct strategies. First, the probe itself is shaped in such a way as to soften the trap along the sensing axis and stiffen it in transverse directions. Next, these characteristics are enhanced by selectively position clamping independent motions of the probe. Finally, force clamping is used to refine the surface contact response. Detailed analyses are presented for each of these mechanisms. To test our sensor, we scan it laterally over a calibration sample consisting of a series of graduated steps, and demonstrate a height resolution of ∼ 11 nm. Using equipartition theory, we estimate that an average force of only ∼ 140 fN is exerted on the sample during the scan, making this technique ideal for the investigation of delicate biological samples

    Computational periscopy with an ordinary digital camera

    Full text link
    Computing the amounts of light arriving from different directions enables a diffusely reflecting surface to play the part of a mirror in a periscope—that is, perform non-line-of-sight imaging around an obstruction. Because computational periscopy has so far depended on light-travel distances being proportional to the times of flight, it has mostly been performed with expensive, specialized ultrafast optical systems^1,2,3,4,5,6,7,8,9,10,11,12. Here we introduce a two-dimensional computational periscopy technique that requires only a single photograph captured with an ordinary digital camera. Our technique recovers the position of an opaque object and the scene behind (but not completely obscured by) the object, when both the object and scene are outside the line of sight of the camera, without requiring controlled or time-varying illumination. Such recovery is based on the visible penumbra of the opaque object having a linear dependence on the hidden scene that can be modelled through ray optics. Non-line-of-sight imaging using inexpensive, ubiquitous equipment may have considerable value in monitoring hazardous environments, navigation and detecting hidden adversaries.We thank F. Durand, W. T. Freeman, Y. Ma, J. Rapp, J. H. Shapiro, A. Torralba, F. N. C. Wong and G. W. Wornell for discussions. This work was supported by the Defense Advanced Research Projects Agency (DARPA) REVEAL Program contract number HR0011-16-C-0030. (HR0011-16-C-0030 - Defense Advanced Research Projects Agency (DARPA) REVEAL Program)Accepted manuscrip
    • …
    corecore