98,213 research outputs found

    Multiscale Model Approach for Magnetization Dynamics Simulations

    Full text link
    Simulations of magnetization dynamics in a multiscale environment enable rapid evaluation of the Landau-Lifshitz-Gilbert equation in a mesoscopic sample with nanoscopic accuracy in areas where such accuracy is required. We have developed a multiscale magnetization dynamics simulation approach that can be applied to large systems with spin structures that vary locally on small length scales. To implement this, the conventional micromagnetic simulation framework has been expanded to include a multiscale solving routine. The software selectively simulates different regions of a ferromagnetic sample according to the spin structures located within in order to employ a suitable discretization and use either a micromagnetic or an atomistic model. To demonstrate the validity of the multiscale approach, we simulate the spin wave transmission across the regions simulated with the two different models and different discretizations. We find that the interface between the regions is fully transparent for spin waves with frequency lower than a certain threshold set by the coarse scale micromagnetic model with no noticeable attenuation due to the interface between the models. As a comparison to exact analytical theory, we show that in a system with Dzyaloshinskii-Moriya interaction leading to spin spiral, the simulated multiscale result is in good quantitative agreement with the analytical calculation

    Optimal control of ankle joint moment: Toward unsupported standing in paraplegia

    Get PDF
    This paper considers part of the problem of how to provide unsupported standing for paraplegics by feedback control. In this work our overall objective is to stabilize the subject by stimulation only of his ankle joints while the other joints are braced, Here, we investigate the problem of ankle joint moment control. The ankle plantarflexion muscles are first identified with pseudorandom binary sequence (PRBS) signals, periodic sinusoidal signals, and twitches. The muscle is modeled in Hammerstein form as a static recruitment nonlinearity followed by a linear transfer function. A linear-quadratic-Gaussian (LQG)-optimal controller design procedure for ankle joint moment was proposed based on the polynomial equation formulation, The approach was verified by experiments in the special Wobbler apparatus with a neurologically intact subject, and these experimental results are reported. The controller structure is formulated in such a way that there are only two scalar design parameters, each of which has a clear physical interpretation. This facilitates fast controller synthesis and tuning in the laboratory environment. Experimental results show the effects of the controller tuning parameters: the control weighting and the observer response time, which determine closed-loop properties. Using these two parameters the tradeoff between disturbance rejection and measurement noise sensitivity can be straightforwardly balanced while maintaining a desired speed of tracking. The experimentally measured reference tracking, disturbance rejection, and noise sensitivity are good and agree with theoretical expectations

    Bias in particle tracking acceleration measurement

    Full text link
    We investigate sources of error in acceleration statistics from Lagrangian Particle Tracking (LPT) data and demonstrate techniques to eliminate or minimise bias errors introduced during processing. Numerical simulations of particle tracking experiments in isotropic turbulence show that the main sources of bias error arise from noise due to position uncertainty and selection biases introduced during numerical differentiation. We outline the use of independent measurements and filtering schemes to eliminate these biases. Moreover, we test the validity of our approach in estimating the statistical moments and probability densities of the Lagrangian acceleration. Finally, we apply these techniques to experimental particle tracking data and demonstrate their validity in practice with comparisons to available data from literature. The general approach, which is not limited to acceleration statistics, can be applied with as few as two cameras and permits a substantial reduction in the spatial resolution and sampling rate required to adequately measure statistics of Lagrangian acceleration

    Feedback control of unsupported standing in paraplegia. Part II: experimental results

    Get PDF
    For pt. I see ibid., vol. 5, no. 4, p. 331-40 (1997). This is the second of a pair of papers which describe an investigation into the feasibility of providing artificial balance to paraplegics using electrical stimulation of the paralyzed muscles. By bracing the body above the shanks, only stimulation of the plantar flexors is necessary. This arrangement prevents any influence from the intact neuromuscular system above the spinal cord lesion. Here, the authors present experimental results from intact and paraplegic subjects

    Estimating the phase in ground-based interferometry: performance comparison between single-mode and multimode schemes

    Full text link
    In this paper we compare the performance of multi and single-mode interferometry for the estimation of the phase of the complex visibility. We provide a theoretical description of the interferometric signal which enables to derive the phase error in presence of detector, photon and atmospheric noises, for both multi and single-mode cases. We show that, despite the loss of flux occurring when injecting the light in the single-mode component (i.e. single-mode fibers, integrated optics), the spatial filtering properties of such single-mode devices often enable higher performance than multimode concepts. In the high flux regime speckle noise dominated, single-mode interferometry is always more efficient, and its performance is significantly better when the correction provided by adaptive optics becomes poor, by a factor of 2 and more when the Strehl ratio is lower than 10%. In low light level cases (detector noise regime), multimode interferometry reaches better performance, yet the gain never exceeds 20%, which corresponds to the percentage of photon loss due to the injection in the guides. Besides, we demonstrate that single-mode interferometry is also more robust to the turbulence in both cases of fringe tracking and phase referencing, at the exception of narrow field of views (<1 arcsec).Comment: 9 pages (+ 11 online material appendices) -- 8 Figures. Accepted in A&
    • 

    corecore