2,062 research outputs found

    The First Provenance Challenge

    No full text
    The first Provenance Challenge was set up in order to provide a forum for the community to help understand the capabilities of different provenance systems and the expressiveness of their provenance representations. To this end, a Functional Magnetic Resonance Imaging workflow was defined, which participants had to either simulate or run in order to produce some provenance representation, from which a set of identified queries had to be implemented and executed. Sixteen teams responded to the challenge, and submitted their inputs. In this paper, we present the challenge workflow and queries, and summarise the participants contributions

    The Research Object Suite of Ontologies: Sharing and Exchanging Research Data and Methods on the Open Web

    Get PDF
    Research in life sciences is increasingly being conducted in a digital and online environment. In particular, life scientists have been pioneers in embracing new computational tools to conduct their investigations. To support the sharing of digital objects produced during such research investigations, we have witnessed in the last few years the emergence of specialized repositories, e.g., DataVerse and FigShare. Such repositories provide users with the means to share and publish datasets that were used or generated in research investigations. While these repositories have proven their usefulness, interpreting and reusing evidence for most research results is a challenging task. Additional contextual descriptions are needed to understand how those results were generated and/or the circumstances under which they were concluded. Because of this, scientists are calling for models that go beyond the publication of datasets to systematically capture the life cycle of scientific investigations and provide a single entry point to access the information about the hypothesis investigated, the datasets used, the experiments carried out, the results of the experiments, the people involved in the research, etc. In this paper we present the Research Object (RO) suite of ontologies, which provide a structured container to encapsulate research data and methods along with essential metadata descriptions. Research Objects are portable units that enable the sharing, preservation, interpretation and reuse of research investigation results. The ontologies we present have been designed in the light of requirements that we gathered from life scientists. They have been built upon existing popular vocabularies to facilitate interoperability. Furthermore, we have developed tools to support the creation and sharing of Research Objects, thereby promoting and facilitating their adoption.Comment: 20 page

    Towards Exascale Scientific Metadata Management

    Full text link
    Advances in technology and computing hardware are enabling scientists from all areas of science to produce massive amounts of data using large-scale simulations or observational facilities. In this era of data deluge, effective coordination between the data production and the analysis phases hinges on the availability of metadata that describe the scientific datasets. Existing workflow engines have been capturing a limited form of metadata to provide provenance information about the identity and lineage of the data. However, much of the data produced by simulations, experiments, and analyses still need to be annotated manually in an ad hoc manner by domain scientists. Systematic and transparent acquisition of rich metadata becomes a crucial prerequisite to sustain and accelerate the pace of scientific innovation. Yet, ubiquitous and domain-agnostic metadata management infrastructure that can meet the demands of extreme-scale science is notable by its absence. To address this gap in scientific data management research and practice, we present our vision for an integrated approach that (1) automatically captures and manipulates information-rich metadata while the data is being produced or analyzed and (2) stores metadata within each dataset to permeate metadata-oblivious processes and to query metadata through established and standardized data access interfaces. We motivate the need for the proposed integrated approach using applications from plasma physics, climate modeling and neuroscience, and then discuss research challenges and possible solutions

    A abordagem POESIA para a integração de dados e serviços na Web semantica

    Get PDF
    Orientador: Claudia Bauzer MedeirosTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: POESIA (Processes for Open-Ended Systems for lnformation Analysis), a abordagem proposta neste trabalho, visa a construção de processos complexos envolvendo integração e análise de dados de diversas fontes, particularmente em aplicações científicas. A abordagem é centrada em dois tipos de mecanismos da Web semântica: workflows científicos, para especificar e compor serviços Web; e ontologias de domínio, para viabilizar a interoperabilidade e o gerenciamento semânticos dos dados e processos. As principais contribuições desta tese são: (i) um arcabouço teórico para a descrição, localização e composição de dados e serviços na Web, com regras para verificar a consistência semântica de composições desses recursos; (ii) métodos baseados em ontologias de domínio para auxiliar a integração de dados e estimar a proveniência de dados em processos cooperativos na Web; (iii) implementação e validação parcial das propostas, em urna aplicação real no domínio de planejamento agrícola, analisando os benefícios e as limitações de eficiência e escalabilidade da tecnologia atual da Web semântica, face a grandes volumes de dadosAbstract: POESIA (Processes for Open-Ended Systems for Information Analysis), the approach proposed in this work, supports the construction of complex processes that involve the integration and analysis of data from several sources, particularly in scientific applications. This approach is centered in two types of semantic Web mechanisms: scientific workflows, to specify and compose Web services; and domain ontologies, to enable semantic interoperability and management of data and processes. The main contributions of this thesis are: (i) a theoretical framework to describe, discover and compose data and services on the Web, inc1uding mIes to check the semantic consistency of resource compositions; (ii) ontology-based methods to help data integration and estimate data provenance in cooperative processes on the Web; (iii) partial implementation and validation of the proposal, in a real application for the domain of agricultural planning, analyzing the benefits and scalability problems of the current semantic Web technology, when faced with large volumes of dataDoutoradoCiência da ComputaçãoDoutor em Ciência da Computaçã

    Designing Traceability into Big Data Systems

    Full text link
    Providing an appropriate level of accessibility and traceability to data or process elements (so-called Items) in large volumes of data, often Cloud-resident, is an essential requirement in the Big Data era. Enterprise-wide data systems need to be designed from the outset to support usage of such Items across the spectrum of business use rather than from any specific application view. The design philosophy advocated in this paper is to drive the design process using a so-called description-driven approach which enriches models with meta-data and description and focuses the design process on Item re-use, thereby promoting traceability. Details are given of the description-driven design of big data systems at CERN, in health informatics and in business process management. Evidence is presented that the approach leads to design simplicity and consequent ease of management thanks to loose typing and the adoption of a unified approach to Item management and usage.Comment: 10 pages; 6 figures in Proceedings of the 5th Annual International Conference on ICT: Big Data, Cloud and Security (ICT-BDCS 2015), Singapore July 2015. arXiv admin note: text overlap with arXiv:1402.5764, arXiv:1402.575
    corecore