62 research outputs found

    3D reconstruction and motion estimation using forward looking sonar

    Get PDF
    Autonomous Underwater Vehicles (AUVs) are increasingly used in different domains including archaeology, oil and gas industry, coral reef monitoring, harbour’s security, and mine countermeasure missions. As electromagnetic signals do not penetrate underwater environment, GPS signals cannot be used for AUV navigation, and optical cameras have very short range underwater which limits their use in most underwater environments. Motion estimation for AUVs is a critical requirement for successful vehicle recovery and meaningful data collection. Classical inertial sensors, usually used for AUV motion estimation, suffer from large drift error. On the other hand, accurate inertial sensors are very expensive which limits their deployment to costly AUVs. Furthermore, acoustic positioning systems (APS) used for AUV navigation require costly installation and calibration. Moreover, they have poor performance in terms of the inferred resolution. Underwater 3D imaging is another challenge in AUV industry as 3D information is increasingly demanded to accomplish different AUV missions. Different systems have been proposed for underwater 3D imaging, such as planar-array sonar and T-configured 3D sonar. While the former features good resolution in general, it is very expensive and requires huge computational power, the later is cheaper implementation but requires long time for full 3D scan even in short ranges. In this thesis, we aim to tackle AUV motion estimation and underwater 3D imaging by proposing relatively affordable methodologies and study different parameters affecting their performance. We introduce a new motion estimation framework for AUVs which relies on the successive acoustic images to infer AUV ego-motion. Also, we propose an Acoustic Stereo Imaging (ASI) system for underwater 3D reconstruction based on forward looking sonars; the proposed system features cheaper implementation than planar array sonars and solves the delay problem in T configured 3D sonars

    Obstacle Detection from IPM and Super-Homography

    Get PDF
    International audienceWe present in this article a simple method to estimate an IPM view from an embedded camera. The method is based on the tracking of the road markers assuming that the road is locally planar. Our aim is the development of a free-space estimator which can be implemented in an Autonomous Guided Vehicle to allow a safe path planning. Opposite to most of the obstacle detection methods which make assumptions on the shape or height of the obstacles, all the scene elements above the road plane (particularly kerbs and poles) have to be detected as obstacles. Combined with the IPM tranformation, this obstacle detection stage can be viewed as the first stage of a free-space estimator dedicated to AGV in the complex urban environments

    Single-pass inline pipeline 3D reconstruction using depth camera array

    Get PDF
    A novel inline inspection (ILI) approach using depth cameras array (DCA) is introduced to create high-fidelity, dense 3D pipeline models. A new camera calibration method is introduced to register the color and the depth information of the cameras into a unified pipe model. By incorporating the calibration outcomes into a robust camera motion estimation approach, dense and complete 3D pipe surface reconstruction is achieved by using only the inline image data collected by a self-powered ILI rover in a single pass through a straight pipeline. The outcomes of the laboratory experiments demonstrate one-millimeter geometrical accuracy and 0.1-pixel photometric accuracy. In the reconstructed model of a longer pipeline, the proposed method generates the dense 3D surface reconstruction model at the millimeter level accuracy with less than 0.5% distance error. The achieved performance highlights its potential as a useful tool for efficient in-line, non-destructive evaluation of pipeline assets

    Map building fusing acoustic and visual information using autonomous underwater vehicles

    Get PDF
    Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Journal of Field Robotics 30 (2013): 763–783, doi:10.1002/rob.21473.We present a system for automatically building 3-D maps of underwater terrain fusing visual data from a single camera with range data from multibeam sonar. The six-degree of freedom location of the camera relative to the navigation frame is derived as part of the mapping process, as are the attitude offsets of the multibeam head and the on-board velocity sensor. The system uses pose graph optimization and the square root information smoothing and mapping framework to simultaneously solve for the robot’s trajectory, the map, and the camera location in the robot’s frame. Matched visual features are treated within the pose graph as images of 3-D landmarks, while multibeam bathymetry submap matches are used to impose relative pose constraints linking robot poses from distinct tracklines of the dive trajectory. The navigation and mapping system presented works under a variety of deployment scenarios, on robots with diverse sensor suites. Results of using the system to map the structure and appearance of a section of coral reef are presented using data acquired by the Seabed autonomous underwater vehicle.The work described herein was funded by the National Science Foundation Censsis ERC under grant number EEC-9986821, and by the National Oceanic and Atmospheric Administration under grant number NA090AR4320129

    Ultraschnelle optische Kohärenztomographie am Augenhintergrund

    Get PDF

    Accurate, fast, and robust 3D city-scale reconstruction using wide area motion imagery

    Get PDF
    Multi-view stereopsis (MVS) is a core problem in computer vision, which takes a set of scene views together with known camera poses, then produces a geometric representation of the underlying 3D model Using 3D reconstruction one can determine any object's 3D profile, as well as knowing the 3D coordinate of any point on the profile. The 3D reconstruction of objects is a generally scientific problem and core technology of a wide variety of fields, such as Computer Aided Geometric Design (CAGD), computer graphics, computer animation, computer vision, medical imaging, computational science, virtual reality, digital media, etc. However, though MVS problems have been studied for decades, many challenges still exist in current state-of-the-art algorithms, for example, many algorithms still lack accuracy and completeness when tested on city-scale large datasets, most MVS algorithms available require a large amount of execution time and/or specialized hardware and software, which results in high cost, and etc... This dissertation work tries to address all the challenges we mentioned, and proposed multiple solutions. More specifically, this dissertation work proposed multiple novel MVS algorithms to automatically and accurately reconstruct the underlying 3D scenes. By proposing a novel volumetric voxel-based method, one of our algorithms achieved near real-time runtime speed, which does not require any special hardware or software, and can be deployed onto power-constrained embedded systems. By developing a new camera clustering module and a novel weighted voting-based surface likelihood estimation module, our algorithm is generalized to process di erent datasets, and achieved the best performance in terms of accuracy and completeness when compared with existing algorithms. This dissertation work also performs the very first quantitative evaluation in terms of precision, recall, and F-score using real-world LiDAR groundtruth data. Last but not least, this dissertation work proposes an automatic workflow, which can stitch multiple point cloud models with limited overlapping areas into one larger 3D model for better geographical coverage. All the results presented in this dissertation work have been evaluated in our wide area motion imagery (WAMI) dataset, and improved the state-of-the-art performances by a large margin.The generated results from this dissertation work have been successfully used in many aspects, including: city digitization, improving detection and tracking performances, real time dynamic shadow detection, 3D change detection, visibility map generating, VR environment, and visualization combined with other information, such as building footprint and roads.Includes bibliographical references
    • …
    corecore