170 research outputs found

    Gesture Recognition Aplication based on Dynamic Time Warping (DTW) FOR Omni-Wheel Mobile Robot

    Get PDF
    This project presents of the movement of omni-wheel robot moves in the trajectory obtained from the gesture recognition system based on Dynamic Time Warping. Single camera is used as the input of the system, which is also a reference to the movement of the omni-wheel robot. Some systems for gesture recognition have been developed using various methods and different approaches. The movement of the omni-wheel robot using the method of Dynamic Time Wrapping (DTW) which has the advantage able to calculate the distance of two data vectors with different lengths. By using this method we can measure the similarity between two sequences at different times and speeds. Dynamic Time Warping to compare the two parameters at varying times and speeds. Application of DTW widely applied in video, audio, graphics, etc. Due to data that can be changed in a linear manner so that it can be analyzed with DTW. In short can find the most suitable value by minimizing the difference between two multidimensional signals that have been compressed. DTW method is expected to gesture recognition system to work optimally, have a high enough value of accuracy and processing time is realtime

    Application of Odometry and Dijkstra Algorithm as Navigation and Shortest Path Determination System of Warehouse Mobile Robot

    Get PDF
    One of the technologies in the industrial world that utilizes robots is the delivery of goods in warehouses, especially in the goods distribution process. This is very useful, especially in terms of resource efficiency and reducing human error. The existing system in this process usually uses the line follower concept on the robot's path with a camera sensor to determine the destination location. If the line and destination are not detected by the sensor or camera, the robot's navigation system will experience an error. it can happen if the sensor is dirty or the track is faded. The aim of this research is to develop a robot navigation system for efficient goods delivery in warehouses by integrating odometry and Dijkstra's algorithm for path planning. Holonomic robot is a robot that moves freely without changing direction to produce motion with high mobility. Dijkstra's algorithm is added to the holonomic robot to obtain the fastest trajectory. by calculating the distance of the node that has not been passed from the initial position, if in the calculation the algorithm finds a shorter distance it will be stored as a new route replacing the previously recorded route. the distance traversed by the djikstra algorithm is 780 mm while a distance of 1100 mm obtains the other routes. The time for using the Djikstra method is proven to be 5.3 seconds faster than the track without the Djikstra method with the same speed. Uneven track terrain can result in a shift in the robot's position so that it can affect the travel data. The conclusion is that odometry and Dijkstra's algorithm as a planning system and finding the shortest path are very efficient for warehouse robots to deliver goods than ordinary line followers without Dijkstra, both in terms of distance and travel time

    Multirobot heterogeneous control considering secondary objectives

    Full text link
    Cooperative robotics has considered tasks that are executed frequently, maintaining the shape and orientation of robotic systems when they fulfill a common objective, without taking advantage of the redundancy that the robotic group could present. This paper presents a proposal for controlling a group of terrestrial robots with heterogeneous characteristics, considering primary and secondary tasks thus that the group complies with the following of a path while modifying its shape and orientation at any time. The development of the proposal is achieved through the use of controllers based on linear algebra, propounding a low computational cost and high scalability algorithm. Likewise, the stability of the controller is analyzed to know the required features that have to be met by the control constants, that is, the correct values. Finally, experimental results are shown with di erent configurations and heterogeneous robots, where the graphics corroborate the expected operation of the proposalThis research was funded by Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia–CEDI

    Motion control of an omnidirectional mobile robot

    Get PDF

    An Efficient Approach for Line-Following Automated Guided Vehicles Based on Fuzzy Inference Mechanism

    Get PDF
    Recently, there has been increasing attention paid to AGV (Automated Guided Vehicle) in factories and warehouses to enhance the level of automation. In order to improve productivity, it is necessary to increase the efficiency of the AGV, including working speed and accuracy. This study presents a fuzzy-PID controller for improving the efficiency of a line-following AGV. A line-following AGV suffers from tracking errors, especially on curved paths, which causes a delay in the lap time. The fuzzy-PID controller in this study mimics the principle of human vehicle control as the situation-aware speed adjustment on curved paths. Consequently, it is possible to reduce the tracking error of AGV and improve its speed. Experimental results show that the Fuzzy-PID controller outperforms the PID controller in both accuracy and speed, especially the lap time of a line-following AGV is enhanced up to 28.6% with the proposed fuzzy-PID controller compared to that with the PID controller only

    Control of a mobile platform didactic purposes

    Get PDF
    Robots are electromechanical machines having ability to perform tasks or actions on some given electronic programming. Line follower robots are mobile robots having ability to follow a line very accurately having an onboard hardwired control circuit. while Omni directional mobile robots have been popularly employed in several applications.This situation brings the idea of omnidirectional robot at manufacturing. Such a robot can respond more quickly and it would be capable of more sophisticated behaviors such as to transport materials and placed on processing machine and outgoing warehouses. This thesis has tried to focus in the control of four wheel omnidirectional mobile robot to be applied to the Factory Lite competition. Four motors are used for governing wheel’s motion. Practical applications of a line follower and odometry will be implemented in this work.Les robots sont des machines électromécaniques capables d'exécuter des tâches ou des actions selon une programmation électronique donnée. Les robots suiveurs de ligne sont des robots mobiles capables de suivre une ligne avec une grande précision grâce à un circuit de contrôle câblé embarqué. Les robots mobiles omnidirectionnels sont couramment utilisés dans plusieurs applications, ce qui amène l'idée d'un robot omnidirectionnel dans la fabrication. Un tel robot peut Un tel robot peut répondre plus rapidement et il serait capable de comportements plus sophistiqués tels que transporter des matériaux et les placer sur des machines de traitement et des entrepôts de sortie. Cette thèse a essayé de se concentrer sur le contrôle d'un robot mobile omnidirectionnel à quatre roues pour être appliqué à la compétition Factory Lite. Quatre moteurs sont utilisés pour gouverner le mouvement des roues. Des applications pratiques d'un suiveur de ligne et d'odométrie seront mises en oeuvre dans ce travail

    Unlimited-wokspace teleoperation

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2012Includes bibliographical references (leaves: 100-105)Text in English; Abstract: Turkish and Englishxiv, 109 leavesTeleoperation is, in its brief description, operating a vehicle or a manipulator from a distance. Teleoperation is used to reduce mission cost, protect humans from accidents that can be occurred during the mission, and perform complex missions for tasks that take place in areas which are difficult to reach or dangerous for humans. Teleoperation is divided into two main categories as unilateral and bilateral teleoperation according to information flow. This flow can be configured to be in either one direction (only from master to slave) or two directions (from master to slave and from slave to master). In unlimited-workspace teleoperation, one of the types of bilateral teleoperation, mobile robots are controlled by the operator and environmental information is transferred from the mobile robot to the operator. Teleoperated vehicles can be used in a variety of missions in air, on ground and in water. Therefore, different constructional types of robots can be designed for the different types of missions. This thesis aims to design and develop an unlimited-workspace teleoperation which includes an omnidirectional mobile robot as the slave system to be used in further researches. Initially, an omnidirectional mobile robot was manufactured and robot-operator interaction and efficient data transfer was provided with the established communication line. Wheel velocities were measured in real-time by Hall-effect sensors mounted on robot chassis to be integrated in controllers. A dynamic obstacle detection system, which is suitable for omnidirectional mobility, was developed and two obstacle avoidance algorithms (semi-autonomous and force reflecting) were created and tested. Distance information between the robot and the obstacles was collected by an array of sensors mounted on the robot. In the semi-autonomous teleoperation scenario, distance information is used to avoid obstacles autonomously and in the force-reflecting teleoperation scenario obstacles are informed to the user by sending back the artificially created forces acting on the slave robot. The test results indicate that obstacle avoidance performance of the developed vehicle with two algorithms is acceptable in all test scenarios. In addition, two control models were developed (kinematic and dynamic control) for the local controller of the slave robot. Also, kinematic controller was supported by gyroscope
    • …
    corecore