54,008 research outputs found

    A Differential Approach for Gaze Estimation

    Full text link
    Non-invasive gaze estimation methods usually regress gaze directions directly from a single face or eye image. However, due to important variabilities in eye shapes and inner eye structures amongst individuals, universal models obtain limited accuracies and their output usually exhibit high variance as well as biases which are subject dependent. Therefore, increasing accuracy is usually done through calibration, allowing gaze predictions for a subject to be mapped to his/her actual gaze. In this paper, we introduce a novel image differential method for gaze estimation. We propose to directly train a differential convolutional neural network to predict the gaze differences between two eye input images of the same subject. Then, given a set of subject specific calibration images, we can use the inferred differences to predict the gaze direction of a novel eye sample. The assumption is that by allowing the comparison between two eye images, annoyance factors (alignment, eyelid closing, illumination perturbations) which usually plague single image prediction methods can be much reduced, allowing better prediction altogether. Experiments on 3 public datasets validate our approach which constantly outperforms state-of-the-art methods even when using only one calibration sample or when the latter methods are followed by subject specific gaze adaptation.Comment: Extension to our paper A differential approach for gaze estimation with calibration (BMVC 2018) Submitted to PAMI on Aug. 7th, 2018 Accepted by PAMI short on Dec. 2019, in IEEE Transactions on Pattern Analysis and Machine Intelligenc

    Intrinsic Motivation and Mental Replay enable Efficient Online Adaptation in Stochastic Recurrent Networks

    Full text link
    Autonomous robots need to interact with unknown, unstructured and changing environments, constantly facing novel challenges. Therefore, continuous online adaptation for lifelong-learning and the need of sample-efficient mechanisms to adapt to changes in the environment, the constraints, the tasks, or the robot itself are crucial. In this work, we propose a novel framework for probabilistic online motion planning with online adaptation based on a bio-inspired stochastic recurrent neural network. By using learning signals which mimic the intrinsic motivation signalcognitive dissonance in addition with a mental replay strategy to intensify experiences, the stochastic recurrent network can learn from few physical interactions and adapts to novel environments in seconds. We evaluate our online planning and adaptation framework on an anthropomorphic KUKA LWR arm. The rapid online adaptation is shown by learning unknown workspace constraints sample-efficiently from few physical interactions while following given way points.Comment: accepted in Neural Network

    Evaluation of trackers for Pan-Tilt-Zoom Scenarios

    Full text link
    Tracking with a Pan-Tilt-Zoom (PTZ) camera has been a research topic in computer vision for many years. Compared to tracking with a still camera, the images captured with a PTZ camera are highly dynamic in nature because the camera can perform large motion resulting in quickly changing capture conditions. Furthermore, tracking with a PTZ camera involves camera control to position the camera on the target. For successful tracking and camera control, the tracker must be fast enough, or has to be able to predict accurately the next position of the target. Therefore, standard benchmarks do not allow to assess properly the quality of a tracker for the PTZ scenario. In this work, we use a virtual PTZ framework to evaluate different tracking algorithms and compare their performances. We also extend the framework to add target position prediction for the next frame, accounting for camera motion and processing delays. By doing this, we can assess if predicting can make long-term tracking more robust as it may help slower algorithms for keeping the target in the field of view of the camera. Results confirm that both speed and robustness are required for tracking under the PTZ scenario.Comment: 6 pages, 2 figures, International Conference on Pattern Recognition and Artificial Intelligence 201

    Tracking Gaze and Visual Focus of Attention of People Involved in Social Interaction

    Get PDF
    The visual focus of attention (VFOA) has been recognized as a prominent conversational cue. We are interested in estimating and tracking the VFOAs associated with multi-party social interactions. We note that in this type of situations the participants either look at each other or at an object of interest; therefore their eyes are not always visible. Consequently both gaze and VFOA estimation cannot be based on eye detection and tracking. We propose a method that exploits the correlation between eye gaze and head movements. Both VFOA and gaze are modeled as latent variables in a Bayesian switching state-space model. The proposed formulation leads to a tractable learning procedure and to an efficient algorithm that simultaneously tracks gaze and visual focus. The method is tested and benchmarked using two publicly available datasets that contain typical multi-party human-robot and human-human interactions.Comment: 15 pages, 8 figures, 6 table

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Vision-Based Production of Personalized Video

    No full text
    In this paper we present a novel vision-based system for the automated production of personalised video souvenirs for visitors in leisure and cultural heritage venues. Visitors are visually identified and tracked through a camera network. The system produces a personalized DVD souvenir at the end of a visitor’s stay allowing visitors to relive their experiences. We analyze how we identify visitors by fusing facial and body features, how we track visitors, how the tracker recovers from failures due to occlusions, as well as how we annotate and compile the final product. Our experiments demonstrate the feasibility of the proposed approach
    corecore