17,441 research outputs found

    Eye-movements in implicit artificial grammar learning

    Get PDF
    Artificial grammar learning (AGL) has been probed with forced-choice behavioral tests (active tests). Recent attempts to probe the outcomes of learning (implicitly acquired knowledge) with eye-movement responses (passive tests) have shown null results. However, these latter studies have not tested for sensitivity effects, for example, increased eye movements on a printed violation. In this study, we tested for sensitivity effects in AGL tests with (Experiment 1) and without (Experiment 2) concurrent active tests (preference- and grammaticality classification) in an eye-tracking experiment. Eye movements discriminated between sequence types in passive tests and more so in active tests. The eye-movement profile did not differ between preference and grammaticality classification, and it resembled sensitivity effects commonly observed in natural syntax processing. Our findings show that the outcomes of implicit structured sequence learning can be characterized in eye tracking. More specifically, whole trial measures (dwell time, number of fixations) showed robust AGL effects, whereas first-pass measures (first-fixation duration) did not. Furthermore, our findings strengthen the link between artificial and natural syntax processing, and they shed light on the factors that determine performance differences in preference and grammaticality classification tests.Max Planck Institute for PsycholinguisticsDonders Institute for Brain, Cognition and BehaviorVetenskapsradetSwedish Dyslexia Foundatio

    On perceptual expertise

    Get PDF
    Expertise is a cognitive achievement that clearly involves experience and learning, and often requires explicit, time-consuming training specific to the relevant domain. It is also intuitive that this kind of achievement is, in a rich sense, genuinely perceptual. Many experts—be they radiologists, bird watchers, or fingerprint examiners—are better perceivers in the domain(s) of their expertise. The goal of this paper is to motivate three related claims, by substantial appeal to recent empirical research on perceptual expertise: Perceptual expertise is genuinely perceptual and genuinely cognitive, and this phenomenon reveals how we can become epistemically better perceivers. These claims are defended against sceptical opponents that deny significant top-down or cognitive effects on perception, and opponents who maintain that any such effects on perception are epistemically pernicious

    The neurocognitive gains of diagnostic reasoning training using simulated interactive veterinary cases

    Get PDF
    The present longitudinal study ascertained training-associated transformations in the neural underpinnings of diagnostic reasoning, using a simulation game named “Equine Virtual Farm” (EVF). Twenty participants underwent structural, EVF/task-based and resting-state MRI and diffusion tensor imaging (DTI) before and after completing their training on diagnosing simulated veterinary cases. Comparing playing veterinarian versus seeing a colorful image across training sessions revealed the transition of brain activity from scientific creativity regions pre-training (left middle frontal and temporal gyrus) to insight problem-solving regions post-training (right cerebellum, middle cingulate and medial superior gyrus and left postcentral gyrus). Further, applying linear mixed-effects modelling on graph centrality metrics revealed the central roles of the creative semantic (inferior frontal, middle frontal and angular gyrus and parahippocampus) and reward systems (orbital gyrus, nucleus accumbens and putamen) in driving pre-training diagnostic reasoning; whereas, regions implicated in inductive reasoning (superior temporal and medial postcentral gyrus and parahippocampus) were the main post-training hubs. Lastly, resting-state and DTI analysis revealed post-training effects within the occipitotemporal semantic processing region. Altogether, these results suggest that simulation-based training transforms diagnostic reasoning in novices from regions implicated in creative semantic processing to regions implicated in improvised rule-based problem-solving

    Why we interact : on the functional role of the striatum in the subjective experience of social interaction

    Get PDF
    Acknowledgments We thank Neil Macrae and Axel Cleeremans for comments on earlier versions of this manuscript. Furthermore, we are grateful to Dorothé Krug and Barbara Elghahwagi for their assistance in data acquisition. This study was supported by a grant of the Köln Fortune Program of the Medical Faculty at the University of Cologne to L.S. and by a grant “Other Minds” of the German Ministry of Research and Education to K.V.Peer reviewedPreprin

    Integrating Spatial Working Memory and Remote Memory: Interactions between the Medial Prefrontal Cortex and Hippocampus

    Get PDF
    In recent years, two separate research streams have focused on information sharing between the medial prefrontal cortex (mPFC) and hippocampus (HC). Research into spatial working memory has shown that successful execution of many types of behaviors requires synchronous activity in the theta range between the mPFC and HC, whereas studies of memory consolidation have shown that shifts in area dependency may be temporally modulated. While the nature of information that is being communicated is still unclear, spatial working memory and remote memory recall is reliant on interactions between these two areas. This review will present recent evidence that shows that these two processes are not as separate as they first appeared. We will also present a novel conceptualization of the nature of the medial prefrontal representation and how this might help explain this area’s role in spatial working memory and remote memory recall

    Know-how, intellectualism, and memory systems

    Get PDF
    ABSTRACTA longstanding tradition in philosophy distinguishes between knowthatand know-how. This traditional “anti-intellectualist” view is soentrenched in folk psychology that it is often invoked in supportof an allegedly equivalent distinction between explicit and implicitmemory, derived from the so-called “standard model of memory.”In the last two decades, the received philosophical view has beenchallenged by an “intellectualist” view of know-how. Surprisingly, defenders of the anti-intellectualist view have turned to the cognitivescience of memory, and to the standard model in particular, todefend their view. Here, I argue that this strategy is a mistake. As it turns out, upon closer scrutiny, the evidence from cognitivepsychology and neuroscience of memory does not support theanti-intellectualist approach, mainly because the standard modelof memory is likely wrong. However, this need not be interpretedas good news for the intellectualist, for it is not clear that theempirical evidence necessarily supp..

    Patients with basal ganglia damage show preserved learning in an economic game.

    Get PDF
    Both basal ganglia (BG) and orbitofrontal cortex (OFC) have been widely implicated in social and non-social decision-making. However, unlike OFC damage, BG pathology is not typically associated with disturbances in social functioning. Here we studied the behavior of patients with focal lesions to either BG or OFC in a multi-strategy competitive game known to engage these regions. We find that whereas OFC patients are significantly impaired, BG patients show intact learning in the economic game. By contrast, when information about the strategic context is absent, both cohorts are significantly impaired. Computational modeling further shows a preserved ability in BG patients to learn by anticipating and responding to the behavior of others using the strategic context. These results suggest that apparently divergent findings on BG contribution to social decision-making may instead reflect a model where higher-order learning processes are dissociable from trial-and-error learning, and can be preserved despite BG damage

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Multimodal Sensory Integration for Perception and Action in High Functioning Children with Autism Spectrum Disorder

    Get PDF
    Movement disorders are the earliest observed features of autism spectrum disorder (ASD) present in infancy. Yet we do not understand the neural basis for impaired goal-directed movements in this population. To reach for an object, it is necessary to perceive the state of the arm and the object using multiple sensory modalities (e.g. vision, proprioception), to integrate those sensations into a motor plan, to execute the plan, and to update the plan based on the sensory consequences of action. In this dissertation, I present three studies in which I recorded hand paths of children with ASD and typically developing (TD) controls as they grasped the handle of a robotic device to control a cursor displayed on a video screen. First, participants performed discrete and continuous movements to capture targets. Cursor feedback was perturbed from the hand\u27s actual position to introduce visuo-spatial conflict between sensory and proprioceptive feedback. Relative to controls, children with ASD made greater errors, consistent with deficits of sensorimotor adaptive and strategic compensations. Second, participants performed a two-interval forced-choice discrimination task in which they perceived two movements of the visual cursor and/or the robot handle and then indicated which of the two movements was more curved. Children with ASD were impaired in their ability to discriminate movement kinematics when provided visual and proprioceptive information simultaneously, suggesting deficits of visuo-proprioceptive integration. Finally, participants made goal-directed reaching movements against a load while undergoing simultaneous functional magnetic resonance imaging (MRI). The load remained constant (predictable) within an initial block of trials and then varied randomly within four additional blocks. Children with ASD exhibited greater movement variability compared to controls during both constant and randomly-varying loads. MRI analysis identified marked differences in the extent and intensity of the neural activities supporting goal-directed reaching in children with ASD compared to TD children in both environmental conditions. Taken together, the three studies revealed deficits of multimodal sensory integration in children with ASD during perception and execution of goal-directed movements and ASD-related motor performance deficits have a telltale neural signature, as revealed by functional MR imaging
    • …
    corecore