514 research outputs found

    Acoustic simultaneous localization and mapping (A-SLAM) of a moving microphone array and its surrounding speakers

    Get PDF
    Acoustic scene mapping creates a representation of positions of audio sources such as talkers within the surrounding environment of a microphone array. By allowing the array to move, the acoustic scene can be explored in order to improve the map. Furthermore, the spatial diversity of the kinematic array allows for estimation of the source-sensor distance in scenarios where source directions of arrival are measured. As sound source localization is performed relative to the array position, mapping of acoustic sources requires knowledge of the absolute position of the microphone array in the room. If the array is moving, its absolute position is unknown in practice. Hence, Simultaneous Localization and Mapping (SLAM) is required in order to localize the microphone array position and map the surrounding sound sources. In realistic environments, microphone arrays receive a convolutive mixture of direct-path speech signals, noise and reflections due to reverberation. A key challenge of Acoustic SLAM (a-SLAM) is robustness against reverberant clutter measurements and missing source detections. This paper proposes a novel bearing-only a-SLAM approach using a Single-Cluster Probability Hypothesis Density filter. Results demonstrate convergence to accurate estimates of the array trajectory and source positions

    Spatial, Spectral, and Perceptual Nonlinear Noise Reduction for Hands-free Microphones in a Car

    Get PDF
    Speech enhancement in an automobile is a challenging problem because interference can come from engine noise, fans, music, wind, road noise, reverberation, echo, and passengers engaging in other conversations. Hands-free microphones make the situation worse because the strength of the desired speech signal reduces with increased distance between the microphone and talker. Automobile safety is improved when the driver can use a hands-free interface to phones and other devices instead of taking his eyes off the road. The demand for high quality hands-free communication in the automobile requires the introduction of more powerful algorithms. This thesis shows that a unique combination of five algorithms can achieve superior speech enhancement for a hands-free system when compared to beamforming or spectral subtraction alone. Several different designs were analyzed and tested before converging on the configuration that achieved the best results. Beamforming, voice activity detection, spectral subtraction, perceptual nonlinear weighting, and talker isolation via pitch tracking all work together in a complementary iterative manner to create a speech enhancement system capable of significantly enhancing real world speech signals. The following conclusions are supported by the simulation results using data recorded in a car and are in strong agreement with theory. Adaptive beamforming, like the Generalized Side-lobe Canceller (GSC), can be effectively used if the filters only adapt during silent data frames because too much of the desired speech is cancelled otherwise. Spectral subtraction removes stationary noise while perceptual weighting prevents the introduction of offensive audible noise artifacts. Talker isolation via pitch tracking can perform better when used after beamforming and spectral subtraction because of the higher accuracy obtained after initial noise removal. Iterating the algorithm once increases the accuracy of the Voice Activity Detection (VAD), which improves the overall performance of the algorithm. Placing the microphone(s) on the ceiling above the head and slightly forward of the desired talker appears to be the best location in an automobile based on the experiments performed in this thesis. Objective speech quality measures show that the algorithm removes a majority of the stationary noise in a hands-free environment of an automobile with relatively minimal speech distortion

    The LOCATA challenge data corpus for acoustic source localization and tracking

    Get PDF
    Algorithms for acoustic source localization and tracking are essential for a wide range of applications such as personal assistants, smart homes, tele-conferencing systems, hearing aids, or autonomous systems. Numerous algorithms have been proposed for this purpose which, however, are not evaluated and compared against each other by using a common database so far. The IEEE-AASP Challenge on sound source localization and tracking (LOCATA) provides a novel, comprehensive data corpus for the objective benchmarking of state-of-the-art algorithms on sound source localization and tracking. The data corpus comprises six tasks ranging from the localization of a single static sound source with a static microphone array to the tracking of multiple moving speakers with a moving microphone array. It contains real-world multichannel audio recordings, obtained by hearing aids, microphones integrated in a robot head, a planar and a spherical microphone array in an enclosed acoustic environment as well as positional information about the involved arrays and sound sources represented by moving human talkers or static loudspeakers

    An audio-visual system for object-based audio : from recording to listening

    Get PDF
    Object-based audio is an emerging representation for audio content, where content is represented in a reproduction format-agnostic way and, thus, produced once for consumption on many different kinds of devices. This affords new opportunities for immersive, personalized, and interactive listening experiences. This paper introduces an end-to-end object-based spatial audio pipeline, from sound recording to listening. A high-level system architecture is proposed, which includes novel audiovisual interfaces to support object-based capture and listenertracked rendering, and incorporates a proposed component for objectification, that is, recording content directly into an object-based form. Text-based and extensible metadata enable communication between the system components. An open architecture for object rendering is also proposed. The system’s capabilities are evaluated in two parts. First, listener-tracked reproduction of metadata automatically estimated from two moving talkers is evaluated using an objective binaural localization model. Second, object-based scene capture with audio extracted using blind source separation (to remix between two talkers) and beamforming (to remix a recording of a jazz group) is evaluate

    Localization of Moving Microphone Arrays from Moving Sound Sources for Robot Audition

    Get PDF
    Acoustic Simultaneous Localization and Mapping (a-SLAM) jointly localizes the trajectory of a microphone array installed on a moving platform, whilst estimating the acoustic map of surrounding sound sources, such as human speakers. Whilst traditional approaches for SLAM in the vision and optical research literature rely on the assumption that the surrounding map features are static, in the acoustic case the positions of talkers are usually time-varying due to head rotations and body movements. This paper demonstrates that tracking of moving sources can be incorporated in a-SLAM by modelling the acoustic map as a Random Finite Set (RFS) of multiple sources and explicitly imposing models of the source dynamics. The proposed approach is verified and its performance evaluated for realistic simulated data

    The third 'CHiME' speech separation and recognition challenge: Analysis and outcomes

    Get PDF
    This paper presents the design and outcomes of the CHiME-3 challenge, the first open speech recognition evaluation designed to target the increasingly relevant multichannel, mobile-device speech recognition scenario. The paper serves two purposes. First, it provides a definitive reference for the challenge, including full descriptions of the task design, data capture and baseline systems along with a description and evaluation of the 26 systems that were submitted. The best systems re-engineered every stage of the baseline resulting in reductions in word error rate from 33.4% to as low as 5.8%. By comparing across systems, techniques that are essential for strong performance are identified. Second, the paper considers the problem of drawing conclusions from evaluations that use speech directly recorded in noisy environments. The degree of challenge presented by the resulting material is hard to control and hard to fully characterise. We attempt to dissect the various 'axes of difficulty' by correlating various estimated signal properties with typical system performance on a per session and per utterance basis. We find strong evidence of a dependence on signal-to-noise ratio and channel quality. Systems are less sensitive to variations in the degree of speaker motion. The paper concludes by discussing the outcomes of CHiME-3 in relation to the design of future mobile speech recognition evaluations
    • …
    corecore