1,707 research outputs found

    Combining motion matching and orientation prediction to animate avatars for consumer-grade VR devices

    Get PDF
    The animation of user avatars plays a crucial role in conveying their pose, gestures, and relative distances to virtual objects or other users. Self-avatar animation in immersive VR helps improve the user experience and provides a Sense of Embodiment. However, consumer-grade VR devices typically include at most three trackers, one at the Head Mounted Display (HMD), and two at the handheld VR controllers. Since the problem of reconstructing the user pose from such sparse data is ill-defined, especially for the lower body, the approach adopted by most VR games consists of assuming the body orientation matches that of the HMD, and applying animation blending and time-warping from a reduced set of animations. Unfortunately, this approach produces noticeable mismatches between user and avatar movements. In this work we present a new approach to animate user avatars that is suitable for current mainstream VR devices. First, we use a neural network to estimate the user's body orientation based on the tracking information from the HMD and the hand controllers. Then we use this orientation together with the velocity and rotation of the HMD to build a feature vector that feeds a Motion Matching algorithm. We built a MoCap database with animations of VR users wearing a HMD and used it to test our approach on both self-avatars and other users’ avatars. Our results show that our system can provide a large variety of lower body animations while correctly matching the user orientation, which in turn allows us to represent not only forward movements but also stepping in any direction.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 860768 (CLIPE project) and the Spanish Ministry of Science and Innovation (PID2021-122136OB-C21).Peer ReviewedPostprint (published version

    Object Manipulation in Virtual Reality Under Increasing Levels of Translational Gain

    Get PDF
    Room-scale Virtual Reality (VR) has become an affordable consumer reality, with applications ranging from entertainment to productivity. However, the limited physical space available for room-scale VR in the typical home or office environment poses a significant problem. To solve this, physical spaces can be extended by amplifying the mapping of physical to virtual movement (translational gain). Although amplified movement has been used since the earliest days of VR, little is known about how it influences reach-based interactions with virtual objects, now a standard feature of consumer VR. Consequently, this paper explores the picking and placing of virtual objects in VR for the first time, with translational gains of between 1x (a one-to-one mapping of a 3.5m*3.5m virtual space to the same sized physical space) and 3x (10.5m*10.5m virtual mapped to 3.5m*3.5m physical). Results show that reaching accuracy is maintained for up to 2x gain, however going beyond this diminishes accuracy and increases simulator sickness and perceived workload. We suggest gain levels of 1.5x to 1.75x can be utilized without compromising the usability of a VR task, significantly expanding the bounds of interactive room-scale VR

    Optimizing Natural Walking Usage in VR using Redirected Teleportation

    Get PDF
    Virtual Reality (VR) has come a long way since its inception and with the recent advancements in technology, high end VR headsets are now commercially available. Although these headsets offer full motion tracking capabilities, locomotion in VR is yet to be fully solved due to space constraints, potential VR sickness and problems with retaining immersion. Teleportation is the most popular locomotion technique in VR as it allows users to safely navigate beyond the confines of the available positional tracking space without inducing VR sickness. It has been argued that the use of teleportation doesn’t facilitate the use of natural walking input which is considered to have a higher presence because teleportation is faster, requires little physical effort and uses limited available tracking space. When a user walks to the edge of the tracking space, he/she must switch to teleportation. When navigating in the same direction, available walking space does not increase, which forces users to remain stationary and continue using teleportation. We present redirected teleportation, a novel locomotion method that increases tracking space usage and natural walking input by subtle reorientation and repositioning of the user. We first analyzed the positional tendencies of the users as they played popular games implementing teleportation and found the utilization of the tracking space to be limited. We then compared redirected teleportation with regular teleportation using a navigation task in three different environments. Analysis of our data show that although redirected walking takes more time, users used significantly fewer teleports and more natural walking input while using more of the available tracking space. The increase in time is largely due to users walking more, which takes more time than using teleportation. Our results provide evidence that redirected teleportation may be a viable approach to increase the usage of natural walking input while decreasing the dependency on teleportation

    A time-motion analysis of elite women's hockey - implications for fitness assessment and training

    Get PDF
    To-date no large scale studies have been published that have used player tracking technology to investigate continuous time-motion analysis in the modern era of Women’s field hockey during Elite level International\ud competition to investigate positional differences and inform fitness training and testing. A new computerised time-motion analysis method, Trak Performance was used to analyse individual player movement (n = 54) from\ud 18 International Women’s hockey matches (18 defenders, 18 midfielders, 18 forwards). Overall analysis identified distance covered 9.1 ± 1.6 km, of which 74.7 ± 9.0% was covered in low intensity activity of stationary, walking and\ud jogging, 3.9 ± 2.4% match time was spent stationary. Mean sprint distance of 12.7 ± 1.7 m, with an average of 26.7 ± 11.5 s between each sprint. Positional differences were identified for the mean percentage of time spent, distances\ud covered in locomotion activity, the mean duration of rest between sprint bouts, the frequency of sprints and work to rest ratios. The majority of contrasts in movement characteristics occur between the defensive players and other outfield positions. Analysis of repeated-sprint ability revealed forwards undertake a significantly greater amount of 16 ± 9. Modern hockey dispels traditional positional roles with tactics and the more fluid nature of attacking plays requiring a more versatile player. Fitness assessment/training should therefore resemble the intermittent nature of the game with sprint recovery\ud periods reflecting the different positional demands

    I'm a Giant: Walking in Large Virtual Environments at High Speed Gains

    Get PDF
    Advances in tracking technology and wireless headsets enable walking as a means of locomotion in Virtual Reality. When exploring virtual environments larger than room-scale, it is often desirable to increase users' perceived walking speed, for which we investigate three methods. (1) Ground-Level Scaling increases users' avatar size, allowing them to walk farther. (2) Eye-Level Scaling enables users to walk through a World in Miniature, while maintaining a street-level view. (3) Seven-League Boots amplifies users' movements along their walking path. We conduct a study comparing these methods and find that users feel most embodied using Ground-Level Scaling and consequently increase their stride length. Using Seven-League Boots, unlike the other two methods, diminishes positional accuracy at high gains, and users modify their walking behavior to compensate for the lack of control. We conclude with a discussion on each technique's strength and weaknesses and the types of situation they might be appropriate for

    Walking with virtual humans : understanding human response to virtual humanoids' appearance and behaviour while navigating in immersive VR

    Get PDF
    In this thesis, we present a set of studies whose results have allowed us to analyze how to improve the realism, navigation, and behaviour of the avatars in an immersive virtual reality environment. In our simulations, participants must perform a series of tasks and we have analyzed perceptual and behavioural data. The results of the studies have allowed us to deduce what improvements are needed to be incorporated to the original simulations, in order to enhance the perception of realism, the navigation technique, the rendering of the avatars, their behaviour or their animations. The most reliable technique for simulating avatars’ behaviour in a virtual reality environment should be based on the study of how humans behave within the environment. For this purpose, it is necessary to build virtual environments where participants can navigate safely and comfortably with a proper metaphor and, if the environment is populated with avatars, simulate their behaviour accurately. All these aspects together will make the participants behave in a way that is closer to how they would behave in the real world. Besides, the integration of these concepts could provide an ideal platform to develop different types of applications with and without collaborative virtual reality such as emergency simulations, teaching, architecture, or designing. In the first contribution of this thesis, we carried out an experiment to study human decision making during an evacuation. We were interested to evaluate to what extent the behaviour of a virtual crowd can affect individuals' decisions. From the second contribution, in which we studied the perception of realism with bots and humans performing just locomotion or varied animations, we can conclude that the combination of having human-like avatars with animation variety can increase the overall realism of a crowd simulation, trajectories and animation. The preliminary study presented in the third contribution of this thesis showed that realistic rendering of the environment and the avatars do not appear to increase the perception of realism in the participants, which is consistent with works presented previously. The preliminary results in our walk-in-place contribution showed a seamless and natural transition between walk-in-place and normal walk. Our system provided a velocity mapping function that closely resembles natural walk. We observed through a pilot study that the system successfully reduces motion sickness and enhances immersion. Finally, the results of the contribution related to locomotion in collaborative virtual reality showed that animation synchronism and footstep sound of the avatars representing the participants do not seem to have a strong impact in terms of presence and feeling of avatar control. However, in our experiment, incorporating natural animations and footstep sound resulted in smaller clearance values in VR than previous work in the literature. The main objective of this thesis was to improve different factors related to virtual reality experiences to make the participants feel more comfortable in the virtual environment. These factors include the behaviour and appearance of the virtual avatars and the navigation through the simulated space in the experience. By increasing the realism of the avatars and facilitating navigation, high scores in presence are achieved during the simulations. This provides an ideal framework for developing collaborative virtual reality applications or emergency simulations that require participants to feel as if they were in real life.En aquesta tesi, es presenta un conjunt d'estudis els resultats dels quals ens han permès analitzar com millorar el realisme, la navegació i el comportament dels avatars en un entorn de realitat virtual immersiu. En les nostres simulacions, els participants han de realitzar una sèrie de tasques i hem analitzat dades perceptives i de comportament mentre les feien. Els resultats dels estudis ens han permès deduir quines millores són necessàries per a ser incorporades a les simulacions originals, amb la finalitat de millorar la percepció del realisme, la tècnica de navegació, la representació dels avatars, el seu comportament o les seves animacions. La tècnica més fiable per simular el comportament dels avatars en un entorn de realitat virtual hauria de basar-se en l'estudi de com es comporten els humans dins de l¿entorn virtual. Per a aquest propòsit, és necessari construir entorns virtuals on els participants poden navegar amb seguretat i comoditat amb una metàfora adequada i, si l¿entorn està poblat amb avatars, simular el seu comportament amb precisió. Tots aquests aspectes junts fan que els participants es comportin d'una manera més pròxima a com es comportarien en el món real. A més, la integració d'aquests conceptes podria proporcionar una plataforma ideal per desenvolupar diferents tipus d'aplicacions amb i sense realitat virtual col·laborativa com simulacions d'emergència, ensenyament, arquitectura o disseny. En la primera contribució d'aquesta tesi, vam realitzar un experiment per estudiar la presa de decisions durant una evacuació. Estàvem interessats a avaluar en quina mesura el comportament d'una multitud virtual pot afectar les decisions dels participants. A partir de la segona contribució, en la qual estudiem la percepció del realisme amb robots i humans que realitzen només una animació de caminar o bé realitzen diverses animacions, vam arribar a la conclusió que la combinació de tenir avatars semblants als humans amb animacions variades pot augmentar la percepció del realisme general de la simulació de la multitud, les seves trajectòries i animacions. L'estudi preliminar presentat en la tercera contribució d'aquesta tesi va demostrar que la representació realista de l¿entorn i dels avatars no semblen augmentar la percepció del realisme en els participants, que és coherent amb treballs presentats anteriorment. Els resultats preliminars de la nostra contribució de walk-in-place van mostrar una transició suau i natural entre les metàfores de walk-in-place i caminar normal. El nostre sistema va proporcionar una funció de mapatge de velocitat que s'assembla molt al caminar natural. Hem observat a través d'un estudi pilot que el sistema redueix amb èxit el motion sickness i millora la immersió. Finalment, els resultats de la contribució relacionada amb locomoció en realitat virtual col·laborativa van mostrar que el sincronisme de l'animació i el so dels avatars que representen els participants no semblen tenir un fort impacte en termes de presència i sensació de control de l'avatar. No obstant això, en el nostre experiment, la incorporació d'animacions naturals i el so de passos va donar lloc a valors de clearance més petits en RV que treballs anteriors ja publicats. L'objectiu principal d'aquesta tesi ha estat millorar els diferents factors relacionats amb experiències de realitat virtual immersiva per fer que els participants se sentin més còmodes en l'entorn virtual. Aquests factors inclouen el comportament i l'aparença dels avatars i la navegació a través de l'entorn virtual. En augmentar el realisme dels avatars i facilitar la navegació, s'aconsegueixen altes puntuacions en presència durant les simulacions. Això proporciona un marc ideal per desenvolupar aplicacions col·laboratives de realitat virtual o simulacions d'emergència que requereixen que els participants se sentin com si estiguessin en la vida realPostprint (published version

    Natural Walking in Virtual Reality:A Review

    Get PDF
    • …
    corecore