97 research outputs found

    Chromosome segregation and recombination in human meiosis: Clinical applications and insight into disjunction errors

    Get PDF
    Chromosome copy number errors (or aneuploidy) of gametes and embryos occurs in humans more frequently than in any other studied species, with a spectrum of manifestations from implantation failure to affected live births. It is predominantly problem arising in maternal meiosis with at least 20% of oocytes being aneuploid, a proportion that increases dramatically with advancing maternal age. Currently the only intervention to reduce the chances of transmitting aneuploidy is by invasive embryo biopsy procedures in high-risk groups (mainly patients with advanced maternal age) undergoing in-vitro fertilisation. Despite the severity of this problem, aneuploidy of the human preimplantation embryo is relatively poorly understood. With this in mind the purpose of this thesis is to explore the premise underpinning the use of preimplantation genetic screening (PGS) in human embryos and investigate its clinical applications and current methodologies. A series of published works demonstrate what I believe to be a significant contribution to the development of applications for studying human preimplantation aneuploidy, also providing insight into its origins and mechanisms at the earliest stages of human development. Specifically, I present a novel standard set of protocols as a general reference work from practitioners in the fields of embryo biopsy and array comparative genomic hybridisation (CGH - the current ‘gold standard’ for preimplantation aneuploidy screening). I present a summary of work encapsulated in three published clinical papers using a linkage based analysis of Single Nucleotide Polymorphism (SNP) karyotypes (Karyomapping). Karyomapping was designed as a near-universal approach for the simultaneous detection of chromosomal and monogenic disorders in a PGS setting and these results demonstrate the utility of the technique in three separate scenarios. In order to study the underlying mechanisms of female meiosis I present my findings on the use of a calcium ionophore to activate human oocytes artificially. An algorithm based on Karyomapping (termed MeioMapping) is demonstrated for the first time specifically to investigate human female meiosis. By recovering all three products of human female meiosis (oocyte, and both polar biopsies – herein termed “Trios”) using calcium ionophore, I present a novel protocol (commissioned by Nature Protocols) to allow exploration of the full extent of meiotic chromosome recombination and segregation that occurs in the female germline. Finally I present a published set of experiments using this protocol to provide new insight into meiotic segregation patterns and recombination in human oocytes. This work uncovers a previously undescribed pattern of meiotic segregation (termed Reverse Segregation), providing an association between recombination rates and chromosome mis-segregation (aneuploidy). This work demonstrates that there is selection for higher recombination rates in the female germline and that there is a role for meiotic drive for recombinant chromatids at meiosis II in human female meiosis. The work presented in this thesis provides deeper understanding of meiotically derived maternal aneuploidy and recombination. More importantly it provides a vehicle within an ethical framework to continue to expand our knowledge and uncover new insights into the basis of meiotic errors that may aid future reproductive therapies

    Unravelling chromosomal instability in mammalian preimplantation embryos using single-cell genomics

    Get PDF
    https://www.ester.ee/record=b5163270*es

    Kromosomaalne ebastabiilsus imetajate varajastes embrĂŒotes

    Get PDF
    VĂ€itekirja elektrooniline versioon ei sisalda publikatsiooneViljatus on kogu maailmas kiiresti kasvavaks probleemiks ning iga kuues paar seisab silmitsi olukorraga, et soovitud rasedust ei teki. EsmasĂŒnnitajate keskmine vanus kasvab samuti, kuid naise vananedes tema viljakus langeb ning seetĂ”ttu pöördub tĂ€napĂ€eval aina rohkem paare viljatusravi poole, et leida oma probleemile lahendus. KehavĂ€line viljastamine (in vitro fertilization, IVF), mille korral toimub munarakkude viljastamine ning embrĂŒote areng katseklaasis, on maailmas kĂ”ige sagedamini kasutatav lastetusravi meetod. Paraku, IVF embrĂŒote sagedased kromosomaalsed aberratsioonid on kĂ”ige suurem vĂ€ljakutse IVF ravil, sest see on ĂŒks peamisi raseduse varajase katkemise (kuni 75%) ja IVF ebaĂ”nnestumise pĂ”hjuseid. Samas, embrĂŒotega seotud teadustöö on piiratud eetiliste pĂ”hjuste tĂ”ttu, seega sĂ”ltuvad inimese embrĂŒote uuringud suurel mÀÀral sobivatest loommudelitest. Kasutades uudset ĂŒksikraku kogu-genoomi analĂŒĂŒsi metoodikat, nĂ€idati antud doktoritöös, et ka veise IVF embrĂŒotes esinevad vĂ€ga sagedased kromosomaalsed aberratsioonid, mille tulemusena on suurem osa varajasi embrĂŒoid mosaiiksed. Lisaks avastati, et embrĂŒo on vĂ”imeline segregeerima ema- ja isapoolse genoomi eraldi rakuliinidesse, mis vĂ”ib-olla aluseks eriploidsuse (mixoploidy) ja kimÀÀride tekkele, kuid selle nĂ€htuse esinemissagedus on hetkel teadmata. Kromosoomi aberratsioonid eksisteerivad samuti loomulikul teel saadud embrĂŒotes, kuid munarakkude ja embrĂŒote in vitro manipuleerimine suurendab genoomi ebastabiilsuse sagedust veise varajastes embrĂŒotes, vĂ€hendades nende elujĂ”ulisust. Kui sama trend kehtib ka inimese embrĂŒote puhul, peaks see julgustama teadus- ja meditsiinikogukonda mitte ainult parandama in vitro kultuuri tingimusi, vaid ka tĂ”stma inimeste teadlikkust viljakuse ja IVF ravi osas. Selleks, et tuvastada embrĂŒo aneuploidiat kasutatakse tĂ€napĂ€eval embrĂŒote sĂ”eluuringut, analĂŒĂŒsides kas kolmanda pĂ€eva vĂ”i viienda pĂ€eva biopsiat. Viimasel ajal on aga hakatud pöörama suuremat tĂ€helepanu ka blastotsööli vedeliku (blastotsĂŒsti sees olev vedelik) analĂŒĂŒsile, kuid antud töö kĂ€igus selgus, et blastotsööli vedeliku analĂŒĂŒsi tulemused on vastuolulised ning seda meetodit ei saa hetkel kasutada embrĂŒote genoomi analĂŒĂŒsis.Fertility issues have become a plague of modern society, as one in six couples will encounter problems to achieve clinical pregnancy. Nowadays, natural conception is often taken for granted, leading to an increased number of couples that turn to assisted reproduction to help conceive and ultimately give birth to a healthy baby. In vitro fertilization (IVF) and embryo transfer is the most commonly performed procedure in ART. However, the uprising era of single-cell research has highlighted the alarming fact that human IVF embryos have high prevalence of chromosomal instability (CIN), which represents one of the most serious challenges in IVF. At the same time, the use of in vitro fertilization (IVF) treatment provides a unique opportunity to study the fundamentals of preimplantation human development, from fertilization to blastocyst stage of development. At the same time, embryo-related research is ethically one of the most complex areas of reproductive science that greatly relies on the use of appropriate animal models. By using novel single-cell genomics approaches, the current thesis has demonstrated that the nature and frequency of genomic abnormalities in in vitro cleavage-stage embryos is highly conserved between cattle and human. Additionally, heterogoneic cell division was discovered, by which the zygote segregates entire parental genomes into separate blastomere lineages, giving rise to mixoploidy and chimaerism, although the frequency of this phenomenon and the fate of mixoploid embryos remain to be investigated. By using the established bovine model it was demonstrated that chromosomal abnormalities are also present in naturally conceived embryos, but in vitro procedures exacerbate CIN in early embryos, compromising their survival rate. If this is the same for human this should encourage scientific and medical communities not only to refine and improve in vitro culture conditions, but also raise awareness among men and women of reproductive age. To tackle the issues of embryonic aneuploidy, embryo chromosome screening is performed, by analysing either day 3 or day 5 biopsy. Recently, the use of blastocoel fluid (BF) biopsy was proposed, but the data presented here shows that BF-DNA is not suitable for diagnostic purposes, and day 5 biopsy remains the safest option with the most reliable results

    Relationship of morphokinetics and gene expression in the generation of aneuploidies in the human embryo

    Get PDF
    INTRODUCCIÓN Durante los Ășltimos veinte años, el nĂșmero de procedimientos de reproducciĂłn asistida ha aumentado drĂĄsticamente e, igualmente, se espera que continĂșe aumentando debido al retraso existente en la maternidad. En Europa se realizan mĂĄs de medio millĂłn de ciclos de fecundaciĂłn in vitro (FIV) cada año, dando lugar a aproximadamente 100.000 reciĂ©n nacidos, lo cual equivale al 1.5% de niños nacidos en Europa. Junto con la expansiĂłn en el campo de la reproducciĂłn asistida, el nĂșmero de avances, tanto tĂ©cnicos como cientĂ­ficos, tambiĂ©n ha ido en aumento. Sin embargo, a pesar de los esfuerzos, las tasas de embarazo por ciclo han permanecido constantes durante los Ășltimos diez años. Las caracterĂ­sticas de la poblaciĂłn que hace uso de estos tratamientos, cuya edad sobrepasa los 35 años en mĂĄs del 70% de los casos, puede estar correlacionada con la existencia de este techo de cristal, ya que se ha descrito que la tasa de anomalĂ­as cromosĂłmicas aumenta significativamente con la edad materna. Como consecuencia, los embriones fecundados in vitro a partir de ovocitos de mujeres de edad materna avanzada tienen una mayor probabilidad de ser cromosĂłmicamente anormales, lo cual tiene como consecuencia un aumento en las tasas de aborto y una disminuciĂłn en las de reciĂ©n nacido vivo. Puesto que no existe la posibilidad de modificar las caracterĂ­sticas de la poblaciĂłn que requiere tratamientos de FIV, al menos desde un punto de vista clĂ­nico, ni tampoco la de modificar la calidad embrionaria a nivel genĂ©tico, el objetivo actual deberĂ­a estar dirigido a mejorar las tĂ©cnicas empleadas durante los tratamientos de FIV para minimizar el posible efecto sobre la calidad embrionaria. Para el desarrollo de nuevas herramientas de cultivo y selecciĂłn embrionaria es necesario un mejor conocimiento de la biologĂ­a de los embriones humanos. Sin embargo, debido al uso limitado de estos para fines cientĂ­ficos, el nĂșmero de estudios en embriones completos y de buena calidad es muy limitado. Y esto, junto a la naturaleza multifactorial de las anomalĂ­as cromosĂłmicas, ha hecho aĂșn mĂĄs complejo encontrar los mecanismos relacionados con las causas y consecuencias de la existencia de aneuploidĂ­as durante el desarrollo embrionario. Los avances tecnolĂłgicos mĂĄs recientes en anĂĄlisis de imagen, anĂĄlisis molecular y genĂ©tico se presentan como una prometedora estrategia para desvelar la maquinaria implicada en la generaciĂłn de aneuploidĂ­as. AsĂ­, nuestra hipĂłtesis es que tanto la morfologĂ­a, la cinĂ©tica, como la transcriptĂłmica del embriĂłn estĂĄn relacionados con la existencia de aneuploidĂ­as, ya sea como causa o como efecto, y un estudio simultĂĄneo de todos estos parĂĄmetros en un mismo embriĂłn podrĂ­a permitir entender mejor la biologĂ­a del desarrollo OBJETIVOS El objetivo general de este estudio fue investigar en detalle el origen y las consecuencias de la apariciĂłn de aneuploidĂ­as durante el desarrollo preimplantacional del embriĂłn humano. Para ello, se llevaron a cabo los siguientes objetivos especĂ­ficos: O1. RealizaciĂłn de un anĂĄlisis descriptivo del embriĂłn humano a cuatros niveles diferentes: morfologĂ­a, cinĂ©tica, transcriptĂłmica y tasa de aneuploidĂ­as. O2. Estudio de las posibles relaciones entre morfologĂ­a, patrones cinĂ©ticos, expresiĂłn gĂ©nica y existencia de aneuploidĂ­as. O3. Desarrollo de un modelo de predicciĂłn de aneuploidĂ­as basado en las diferencias mĂĄs significativas encontradas entre embriones aneuploides y euploides. O4. IntegraciĂłn de los datos sobre morfocinĂ©tica, transcriptĂłmica y aneuploidĂ­as para crear un atlas Ășnico sobre el desarrollo preimplantacional humano. MÉTODOS Se descongelaron ciento diecisiete (117) cigotos humanos donados a investigaciĂłn provenientes de 19 parejas con una edad media materna de 33.7 ± 4.3 años. De ellos, sobrevivieron Ochenta y cinco cigotos, los cuales fueron cultivados usando la tecnologĂ­a de time-lapse, que permite crear una pelĂ­cula del desarrollo embrionario a partir de fotografĂ­as tomadas cada 5 minutos. Los embriones fueron cultivados durante diferentes tiempos incluyendo el estadio pronuclear y las siete primeras divisiones mitĂłticas. Tras el cultivo, cada embriĂłn se desagregĂł en cĂ©lulas individuales, incluyendo los corpĂșsculos polares en aquellos en estadio de cigoto. La mitad de las cĂ©lulas de cada embriĂłn se amplificaron usando la tĂ©cnica de WGA (Whole Genome Amplification), que permite la amplificaciĂłn de ADN a nivel de cĂ©lula Ășnica, para ser analizadas posteriormente mediante arrays de CGH (Comparative genomic hybridization) y determinar asĂ­ su dotaciĂłn cromosĂłmica. Por otro lado, la otra mitad de las cĂ©lulas de cada embriĂłn se analizaron mediante PCR cuantitativa mediante un sistema de microfluidos que permitĂ­a el anĂĄlisis a nivel de cĂ©lula Ășnica. AsĂ­, se estudiĂł la expresiĂłn de 86 genes relacionados con la existencia de aneuploidĂ­as en la bibliografĂ­a previa para determinar el perfil transcriptĂłmico de los embriones. Finalmente, se correlacionaron los parĂĄmetros morfocinĂ©ticos, obtenidos en las pelĂ­culas de time-lapse, el estadio cromosĂłmico y los niveles de expresiĂłn gĂ©nicos para cada embriĂłn. CONCLUSIONES C1. Los parĂĄmetros morfolĂłgicos pueden tener un comportamiento dinĂĄmico durante el desarrollo embrionario. En concreto, los fragmentos celulares, los cuales aparecen mayoritariamente durante la primera divisiĂłn mitĂłtica del embriĂłn pueden dividirse, fusionarse a otros fragmentos o ser reabsorbidos por blastĂłmeras. C2. Los parĂĄmetros cinĂ©ticos se ven alterados por la existencia de divisiones irregulares durante el desarrollo embrionario, por lo cual estos deben calcularse de manera independiente segĂșn el tipo de divisiĂłn para evitar conclusiones confusas. C3. MĂĄs de la mitad de los embriones humanos en este estudio, provenientes de pacientes de tĂ©cnicas de reproducciĂłn asistida fueron aneuploides. AdemĂĄs, segĂșn los resultados, la incidencia de aneuploidĂ­as estĂĄ correlacionada con la existencia de multinucleaciĂłn, aunque no con la existencia de fragmentaciĂłn o vacuolas en el embriĂłn. C4. Durante el desarrollo embrionario, encontramos grupos de genes con diferentes patrones de expresiĂłn segĂșn su origen de transcripciĂłn: materno, embrionario o ambos. AdemĂĄs, se observĂł que la activaciĂłn embrionaria ocurre desde el estadio mĂĄs temprano del embriĂłn humano, el cigoto. C5. La cinĂ©tica de los embriones aneuploides estĂĄ alterada en comparaciĂłn con los euploides. En concreto, el tiempo entre la desapariciĂłn pronuclear y el comienzo de la primera citocinesis fue mĂĄs largo en los embriones aneuploides. AdemĂĄs, el tiempo entre los estadios de tres y cuatro cĂ©lulas fue tambiĂ©n mĂĄs largo en los embriones aneuploides, aunque esta diferencia se debiĂł a la mayor proporciĂłn de embriones aneuploides con divisiones irregulares, las cuales alteran el patrĂłn cinĂ©tico embrionario. C6. El perfil transcriptĂłmico de los embriones aneuploides mostrĂł diferencias estadĂ­sticamente significativas durante las primeras 30 horas de desarrollo frente al de los embriones euploides. Gracias a estas diferencias, se comprobĂł que la existencia de aneuploidĂ­as en los embriones en estadio de cĂ©lulas se puede predecir haciendo uso de una firma transcriptĂłmica basada en 12 genes. C7. El atlas del embriĂłn humano generado con los datos de este estudio muestra una alta variabilidad durante el desarrollo preimplantacional embrionario. Mientras que los embriones euploides parecen seguir una Ășnica ruta para desarrollarse satisfactoriamente sin mucha variabilidad en su morfocinĂ©tica, los embriones aneuploides siguen mĂșltiples rutas, solapĂĄndose y camuflĂĄndose en ocasiones con el comportamiento de los embriones euploides, dificultando asĂ­ su diferenciaciĂłn mediante tĂ©cnicas no-invasivas.Over the last 20 years, the number of assisted reproduction procedures has drastically increased, and this trend is expected to continue as parenthood is postponed. In Europe, more than half a million in vitro fertilization (IVF) cycles are performed annually, resulting in 100,000 newborns. With the increased use of assisted reproduction, a concomitant increase in success rates would also be expected. However, the pregnancy rate per cycle has remained constant over the same 10-year range, despite important progress in the field. The majority of women using assisted reproduction are over 35 years old, and this needs to be taken into consideration since the rate of chromosomal abnormalities in the oocytes increases with age. As a consequence, advanced maternal age may result in an increase in the number of aneuploid embryos, which would be translated into high miscarriage rates and low live-birth rates. Since we are not able to modify the IVF population or to change embryo quality, our goal should be to focus on improving IVF techniques. Such improvement necessitates a better understanding of the etiology of embryo aneuploidies. Recent advances in imaging and molecular and genetic analyses are postulated as promising strategies to unveil the mechanisms involved in aneuploidy generation. Thus, our goal was to analyse, simultaneously in the same human embryo, morphology, kinetics, transcriptomics and genetics to find a correlation between these parameters in the origin of aneuploidies. Here we combine time-lapse, complete chromosomal assessment and single-cell real-time quantitative PCR to simultaneously obtain information from all cells that compose a human embryo until the approximately eight-cell stage. Our data indicate that the chromosomal status of aneuploid embryos correlates with significant differences in the kinetic pattern when compared with euploid embryos, especially in the duration of the first mitotic phase. We also demonstrate that embryo kinetics is affected by the existence of irregular divisions during development, and this should be taken into consideration for future studies. Gene expression analyses reveal that embryonic genome activation starts as early as the zygote stage. Moreover, gene expression profiling suggests that a subset of genes is differentially expressed in aneuploid embryos during the first 30 hours of development. Thus, we propose that the chromosomal fate of an embryo is likely determined as early as the pronuclear stage and may be predicted by a 12-gene transcriptomic signature. Finally, the atlas generated from the data obtained in this study shows the high variability underlying human embryo development. While euploid embryos seem to follow a uniform development without high variability for morphokinetics, aneuploid embryos may follow different pathways, overlapping with and mimicking euploid embryos in some cases, making them hard to differentiate

    EmbryoGenetics

    Get PDF
    The science of human genetics has advanced at an exponential pace since the double-helix structure of DNA was identified in 1953. Within only 25 years of that discovery, the first gene was sequenced. Subsequent efforts in the span of a few decades have brought advanced next-generation sequencing and new tools for genome editing, allowing scientists to write and rewrite the code of life. We are now realizing that genetics represents yet another system of information technology that follows Moore’s law, stating that computer processing power roughly doubles every two years. Importantly, with such rapid and sophisticated advancements, any tools or studies applicable to adult genetics can now also be applied to embryos.Genetic disorders affect 1% of live births and are responsible for 20% of pediatric hospitalizations and 20% of infant mortality. Many disorders are caused by recessive or X-linked genetic mutations carried by 85% of humans. Because assisted reproduction has armed us with technologies like in vitro fertilization that provide access to human embryos, we began to screen some genetic diseases simply by selecting sex. The first live births following preimplantation genetic testing (PGT) to identify sex in X-linked disease were reported by Alan Handyside in 1990. This groundbreaking work used the identification of male embryos and selective transfer of unaffected normal or carrier females as proof-of-concept to avoid genetic diseases, paving the way to extend the concept to PGT for monogenic diseases (PGT-M), including Mendelian single-gene defects (autosomal dominant/recessive, X-linked dominant/recessive), severe childhood lethality or early-onset disease, cancer predisposition, and HLA typing for histocompatible cord-blood stem cells’ transplantation. Later, we moved onto the identification and selection of euploid embryos by analysing all 23 pairs of chromosomes in 4–8 cells from the trophectoderm, called PGT for aneuploidy (PGT-A). PGT-A currently leverages next-generation sequencing technologies to uncover meiotic- and mitotic-origin aneuploidies affecting whole chromosomes, as well as duplications/deletions of small chromosome regions. A step forward was the use of structural chromosome rearrangements (PGT-SR) to identify Robertsonian and reciprocal translocations, inversions, and balanced vs. unbalanced rearrangements. Another advancement came with PGT for polygenic risk scoring (PGT-P). This technique takes us from learning how to read simple words to starting to understand poetry (i.e., evolving from PGT-M/A/SR to PGT-P for multifactorial, polygenic risk prediction). Moreover, we are moving from embryo selection to intervention because the genetic code is not only readable, but also re-writeable. Indeed, gene editing is now possible using tools like CRISPR/Cas9, which are applicable to all species, including human embryos

    Telomere Length and Distribution in Three Developmental Stages

    Get PDF
    Telomeres are specialised nucleoprotein structures present at the ends of each chromatid that function to maintain genome stability. It is well established that a gradual decline in telomere length is associated with the process of cellular ageing, and thereby to the pathobiology of age-related diseases. In addition, the localisation of the telomere at the nuclear periphery plays an important role in the spatio-temporal organisation of the genome and in ensuring faithful segregation of chromosomes during meiosis. The aims of this thesis were to investigate telomere localisation in the nucleus, and telomere length in three hitherto early stages of development, gametogenesis, preimplantation embryogenesis and the neonatal period. Specifically: 1. To test the hypothesis that telomeres localised at the nuclear periphery in sperm cells and that this organisation was altered in sub-fertile men 2. To optimise a means of assessing average telomere length using DNA from small sample sizes and using whole genome amplified DNA from single cells 3. To investigate the role of telomere length in reproductive ageing and aneuploidy generation in women by testing the hypothesis that telomere length is significantly shorter in the first polar bodies and cleavage stage embryos of older women 4. To test the hypothesis that “preterm at term” babies (i.e. premature babies assessed at the time of their due date) displayed genetic signs of premature ageing (as manifested by significantly shorter telomeres than their term born counterparts) alongside the already established clinical signs (characterised by hypertension, diabetes and altered body fat distribution) Results confirmed the peripheral distribution of telomeres in the sperm heads of normally fertile males (using both 2D and 3D imaging) plus the novel finding that telomere distribution patterns are altered in the sperm heads of infertile males. Secondly, a reliable means of measuring telomere length was optimised in order to assess average telomere length using DNA from small sample volumes (down to single cells). Using this technology, average telomere length analysis in polar bodies and embryos found no evidence to support the hypothesis that telomere length is associated with either advanced maternal age or aneuploidy generation. Similarly, results suggest that telomere length is not significantly shorter in “preterm at term” infants compared to term born controls, thus providing no evidence that telomere attrition is involved in the pathobiology of the ‘aged phenotype’ observed in preterm infants. Taken together, results from this thesis provide some novel insights into the function of these highly important features of the genome, but also highlight that a great deal remains to be uncovered in the complex molecular mechanisms that contribute to the regulation of telomere length and nuclear distribution
    • 

    corecore