297 research outputs found

    Scalable Learning Adaptive to Unknown Dynamics and Graphs

    Get PDF
    University of Minnesota Ph.D. dissertation.June 2019. Major: Electrical/Computer Engineering. Advisor: Georgios B. Giannakis. 1 computer file (PDF); xii, 174 pages.With the scale of information growing every day, the key challenges in machine learning include the high-dimensionality and sheer volume of feature vectors that may consist of real and categorical data, as well as the speed and the typically streaming format of data acquisition that may also entail outliers and misses. The latter may be present, either unintentionally or intentionally, in order to cope with scalability, privacy, and adversarial behavior. These challenges provide ample opportunities for algorithmic and analytical innovations in online and nonlinear subspace learning approaches. Among the available nonlinear learning tools, those based on kernels have merits that are well documented. However, most rely on a preselected kernel, whose prudent choice presumes task-specific prior information that is generally not available. It is also known that kernel-based methods do not scale well with the size or dimensionality of the data at hand. Besides data science, the urgent need for scalable tools is a core issue also in network science that has recently emerged as a means of collectively understanding the behavior of complex interconnected entities. The rich spectrum of application domains comprises communication, social, financial, gene-regulatory, brain, and power networks, to name a few. Prominent tasks in all network science applications are those of topology identification and inference of nodal processes evolving over graphs. Most contemporary graph-driven inference approaches rely on linear and static models that are simple and tractable, but also presume that the nodal processes are directly observable. To cope with these challenges, the present thesis first introduces a novel online categorical subspace learning approach to track the latent structure of categorical data `on the fly.' Leveraging the random feature approximation, it then develops an adaptive online multi-kernel learning approach (termed AdaRaker), which accounts not only for data-driven learning of the kernel combination, but also for the unknown dynamics. Performance analysis is provided in terms of both static and dynamic regrets to quantify the novel learning function approximation. In addition, the thesis introduces a kernel-based topology identification approach that can even account for nonlinear dependencies among nodes and across time. To cope with nodal processes that may not be directly observable in certain applications, tensor-based algorithms that leverage piecewise stationary statistics of nodal processes are developed, and pertinent identifiability conditions are established. To facilitate real-time operation and inference of time-varying networks, an adaptive tensor decomposition based scheme is put forth to track the topologies of time-varying networks. Last but not least, the present thesis offers a unifying framework to deal with various learning tasks over possibly dynamic networks. These tasks include dimensionality reduction, classification, and clustering. Tests on both synthetic and real datasets from the aforementioned application domains are carried out to showcase the effectiveness of the novel algorithms throughout

    Kernel-based Inference of Functions over Graphs

    Get PDF
    The study of networks has witnessed an explosive growth over the past decades with several ground-breaking methods introduced. A particularly interesting -- and prevalent in several fields of study -- problem is that of inferring a function defined over the nodes of a network. This work presents a versatile kernel-based framework for tackling this inference problem that naturally subsumes and generalizes the reconstruction approaches put forth recently by the signal processing on graphs community. Both the static and the dynamic settings are considered along with effective modeling approaches for addressing real-world problems. The herein analytical discussion is complemented by a set of numerical examples, which showcase the effectiveness of the presented techniques, as well as their merits related to state-of-the-art methods.Comment: To be published as a chapter in `Adaptive Learning Methods for Nonlinear System Modeling', Elsevier Publishing, Eds. D. Comminiello and J.C. Principe (2018). This chapter surveys recent work on kernel-based inference of functions over graphs including arXiv:1612.03615 and arXiv:1605.07174 and arXiv:1711.0930

    Schnelle Löser für partielle Differentialgleichungen

    Get PDF
    [no abstract available

    Numerical simulation of viscoelastic free‐surface flows using a streamfunction/log‐conformation formulation and the volume‐of‐fluid method

    Get PDF

    Robust Control

    Get PDF
    The need to be tolerant to changes in the control systems or in the operational environment of systems subject to unknown disturbances has generated new control methods that are able to deal with the non-parametrized disturbances of systems, without adapting itself to the system uncertainty but rather providing stability in the presence of errors bound in a model. With this approach in mind and with the intention to exemplify robust control applications, this book includes selected chapters that describe models of H-infinity loop, robust stability and uncertainty, among others. Each robust control method and model discussed in this book is illustrated by a relevant example that serves as an overview of the theoretical and practical method in robust control

    Robotic manipulation of cloth: mechanical modeling and perception

    Get PDF
    (Eng) In this work we study various mathematical problems arising from the robotic manipulation of cloth. First, we develop a locking-free continuous model for the physical simulation of inextensible textiles. We present a novel 'finite element' discretization of our inextensibility constraints which results in a unified treatment of triangle and quadrilateral meshings of the cloth. Next, we explain how to incorporate contacts, self-collisions and friction into the equations of motion, so that frictional forces and inextensibility and collision constraints may be integrated implicitly and without any decoupling. We develop an efficient 'active-set' solver tailored to our non-linear problem which takes into account past active constraints to accelerate the resolution of unresolved contacts and moreover can be initialized from any non-necessarily feasible point. Then, we embark ourselves in the empirical validation of the developed model. We record in a laboratory setting --with depth cameras and motion capture systems-- the motions of seven types of textiles (including e.g. cotton, denim and polyester) of various sizes and at different speeds and end up with more than 80 recordings. The scenarios considered are all dynamic and involve rapid shaking and twisting of the textiles, collisions with frictional objects and even strong hits with a long stick. We then, compare the recorded textiles with the simulations given by our inextensible model, and find that on average the mean error is of the order of 1 cm even for the largest sizes (DIN A2) and the most challenging scenarios. Furthermore, we also tackle other problems relevant to robotic cloth manipulation, such as cloth perception and classification of its states. We present a reconstruction algorithm based on Morse theory that proceeds directly from a point-cloud to obtain a cellular decomposition of a surface with or without boundary: the results are a piecewise parametrization of the cloth surface as a union of Morse cells. From the cellular decomposition the topology of the surface can be then deduced immediately. Finally, we study the configuration space of a piece of cloth: since the original state of a piece of cloth is flat, the set of possible states under the inextensible assumption is the set of developable surfaces isometric to a fixed one. We prove that a generic simple, closed, piecewise regular curve in space can be the boundary of only finitely many developable surfaces with nonvanishing mean curvature. Inspired on this result we introduce the dGLI cloth coordinates, a low-dimensional representation of the state of a piece of cloth based on a directional derivative of the Gauss Linking Integral. These coordinates --computed from the position of the cloth's boundary-- allow to distinguish key qualitative changes in folding sequences.(Esp) En este trabajo estudiamos varios problemas matemáticos relacionados con la manipulación robótica de textiles. En primer lugar, desarrollamos un modelo continuo libre de 'locking' para la simulación física de textiles inextensibles. Presentamos una novedosa discretización usando 'elementos finitos' de nuestras restricciones de inextensibilidad resultando en un tratamiento unificado de mallados triangulares y cuadrangulares de la tela. A continuación, explicamos cómo incorporar contactos, autocolisiones y fricción en las ecuaciones de movimiento, de modo que las fuerzas de fricción y las restricciones de inextensibilidad y colisiones puedan integrarse implícitamente y sin ningún desacoplamiento. Desarrollamos un 'solver' de tipo 'conjunto-activo' adaptado a nuestro problema no lineal que tiene en cuenta las restricciones activas pasadas para acelerar la resolución de los contactos no resueltos y, además, puede inicializarse desde cualquier punto no necesariamente factible. Posteriormente, nos embarcamos en la validación empírica del modelo desarrollado. Grabamos en un entorno de laboratorio -con cámaras de profundidad y sistemas de captura de movimiento- los movimientos de siete tipos de textiles (entre los que se incluyen, por ejemplo, algodón, tela vaquera y poliéster) de varios tamaños y a diferentes velocidades, terminando con más de 80 grabaciones. Los escenarios considerados son todos dinámicos e implican sacudidas y torsiones rápidas de los textiles, colisiones con obstáculos e incluso golpes con una varilla cilíndrica. Finalmente, comparamos las grabaciones con las simulaciones dadas por nuestro modelo inextensible, y encontramos que, de media, el error es del orden de 1 cm incluso para las telas más grandes (DIN A2) y los escenarios más complicados. Además, también abordamos otros problemas relevantes para la manipulación robótica de telas, como son la percepción y la clasificación de sus estados. Presentamos un algoritmo de reconstrucción basado en la teoría de Morse que procede directamente de una nube de puntos para obtener una descomposición celular de una superficie con o sin borde: los resultados son una parametrización a trozos de la superficie de la tela como una unión de celdas de Morse. A partir de la descomposición celular puede deducirse inmediatamente la topología de la superficie. Por último, estudiamos el espacio de configuración de un trozo de tela: dado que el estado original de la tela es plano, el conjunto de estados posibles bajo la hipótesis de inextensibilidad es el conjunto de superficies desarrollables isométricas a una fija. Demostramos que una curva genérica simple, cerrada y regular a trozos en el espacio puede ser el borde de un número finito de superficies desarrollables con curvatura media no nula. Inspirándonos en este resultado, introducimos las coordenadas dGLI, una representación de dimensión baja del estado de un pedazo de tela basada en una derivada direccional de la integral de enlazamiento de Gauss. Estas coordenadas -calculadas a partir de la posición del borde de la tela- permiten distinguir cambios cualitativos clave en distintas secuencias de plegado.Postprint (published version

    Robotic manipulation of cloth: mechanical modeling and perception

    Get PDF
    (Eng) In this work we study various mathematical problems arising from the robotic manipulation of cloth. First, we develop a locking-free continuous model for the physical simulation of inextensible textiles. We present a novel 'finite element' discretization of our inextensibility constraints which results in a unified treatment of triangle and quadrilateral meshings of the cloth. Next, we explain how to incorporate contacts, self-collisions and friction into the equations of motion, so that frictional forces and inextensibility and collision constraints may be integrated implicitly and without any decoupling. We develop an efficient 'active-set' solver tailored to our non-linear problem which takes into account past active constraints to accelerate the resolution of unresolved contacts and moreover can be initialized from any non-necessarily feasible point. Then, we embark ourselves in the empirical validation of the developed model. We record in a laboratory setting --with depth cameras and motion capture systems-- the motions of seven types of textiles (including e.g. cotton, denim and polyester) of various sizes and at different speeds and end up with more than 80 recordings. The scenarios considered are all dynamic and involve rapid shaking and twisting of the textiles, collisions with frictional objects and even strong hits with a long stick. We then, compare the recorded textiles with the simulations given by our inextensible model, and find that on average the mean error is of the order of 1 cm even for the largest sizes (DIN A2) and the most challenging scenarios. Furthermore, we also tackle other problems relevant to robotic cloth manipulation, such as cloth perception and classification of its states. We present a reconstruction algorithm based on Morse theory that proceeds directly from a point-cloud to obtain a cellular decomposition of a surface with or without boundary: the results are a piecewise parametrization of the cloth surface as a union of Morse cells. From the cellular decomposition the topology of the surface can be then deduced immediately. Finally, we study the configuration space of a piece of cloth: since the original state of a piece of cloth is flat, the set of possible states under the inextensible assumption is the set of developable surfaces isometric to a fixed one. We prove that a generic simple, closed, piecewise regular curve in space can be the boundary of only finitely many developable surfaces with nonvanishing mean curvature. Inspired on this result we introduce the dGLI cloth coordinates, a low-dimensional representation of the state of a piece of cloth based on a directional derivative of the Gauss Linking Integral. These coordinates --computed from the position of the cloth's boundary-- allow to distinguish key qualitative changes in folding sequences.(Esp) En este trabajo estudiamos varios problemas matemáticos relacionados con la manipulación robótica de textiles. En primer lugar, desarrollamos un modelo continuo libre de 'locking' para la simulación física de textiles inextensibles. Presentamos una novedosa discretización usando 'elementos finitos' de nuestras restricciones de inextensibilidad resultando en un tratamiento unificado de mallados triangulares y cuadrangulares de la tela. A continuación, explicamos cómo incorporar contactos, autocolisiones y fricción en las ecuaciones de movimiento, de modo que las fuerzas de fricción y las restricciones de inextensibilidad y colisiones puedan integrarse implícitamente y sin ningún desacoplamiento. Desarrollamos un 'solver' de tipo 'conjunto-activo' adaptado a nuestro problema no lineal que tiene en cuenta las restricciones activas pasadas para acelerar la resolución de los contactos no resueltos y, además, puede inicializarse desde cualquier punto no necesariamente factible. Posteriormente, nos embarcamos en la validación empírica del modelo desarrollado. Grabamos en un entorno de laboratorio -con cámaras de profundidad y sistemas de captura de movimiento- los movimientos de siete tipos de textiles (entre los que se incluyen, por ejemplo, algodón, tela vaquera y poliéster) de varios tamaños y a diferentes velocidades, terminando con más de 80 grabaciones. Los escenarios considerados son todos dinámicos e implican sacudidas y torsiones rápidas de los textiles, colisiones con obstáculos e incluso golpes con una varilla cilíndrica. Finalmente, comparamos las grabaciones con las simulaciones dadas por nuestro modelo inextensible, y encontramos que, de media, el error es del orden de 1 cm incluso para las telas más grandes (DIN A2) y los escenarios más complicados. Además, también abordamos otros problemas relevantes para la manipulación robótica de telas, como son la percepción y la clasificación de sus estados. Presentamos un algoritmo de reconstrucción basado en la teoría de Morse que procede directamente de una nube de puntos para obtener una descomposición celular de una superficie con o sin borde: los resultados son una parametrización a trozos de la superficie de la tela como una unión de celdas de Morse. A partir de la descomposición celular puede deducirse inmediatamente la topología de la superficie. Por último, estudiamos el espacio de configuración de un trozo de tela: dado que el estado original de la tela es plano, el conjunto de estados posibles bajo la hipótesis de inextensibilidad es el conjunto de superficies desarrollables isométricas a una fija. Demostramos que una curva genérica simple, cerrada y regular a trozos en el espacio puede ser el borde de un número finito de superficies desarrollables con curvatura media no nula. Inspirándonos en este resultado, introducimos las coordenadas dGLI, una representación de dimensión baja del estado de un pedazo de tela basada en una derivada direccional de la integral de enlazamiento de Gauss. Estas coordenadas -calculadas a partir de la posición del borde de la tela- permiten distinguir cambios cualitativos clave en distintas secuencias de plegado

    Visual Analytics and Interactive Machine Learning for Human Brain Data

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)This study mainly focuses on applying visualization techniques on human brain data for data exploration, quality control, and hypothesis discovery. It mainly consists of two parts: multi-modal data visualization and interactive machine learning. For multi-modal data visualization, a major challenge is how to integrate structural, functional and connectivity data to form a comprehensive visual context. We develop a new integrated visualization solution for brain imaging data by combining scientific and information visualization techniques within the context of the same anatomic structure. For interactive machine learning, we propose a new visual analytics approach to interactive machine learning. In this approach, multi-dimensional data visualization techniques are employed to facilitate user interactions with the machine learning process. This allows dynamic user feedback in different forms, such as data selection, data labeling, and data correction, to enhance the efficiency of model building

    Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen : 20. bis 22.7. 2015, Bauhaus-Universität Weimar

    Get PDF
    The 20th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering will be held at the Bauhaus University Weimar from 20th till 22nd July 2015. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences, to report on their results in research, development and practice and to discuss. The conference covers a broad range of research areas: numerical analysis, function theoretic methods, partial differential equations, continuum mechanics, engineering applications, coupled problems, computer sciences, and related topics. Several plenary lectures in aforementioned areas will take place during the conference. We invite architects, engineers, designers, computer scientists, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference
    corecore