916 research outputs found

    Adaptive Control of Unknown Pure Feedback Systems with Pure State Constraints

    Full text link
    This paper deals with the tracking control problem for a class of unknown pure feedback system with pure state constraints on the state variables and unknown time-varying bounded disturbances. An adaptive controller is presented for such systems for the very first time. The controller is designed using the backstepping method. While designing it, Barrier Lyapunov Functions is used so that the state variables do not contravene its constraints. In order to cope with the unknown dynamics of the system, an online approximator is designed using a neural network with a novel adaptive law for its weight update. In the stability analysis of the system, the time derivative of Lyapunov function involves known virtual control coefficient with unknown direction and to deal with such problem Nussbaum gain is used to design the control law. Furthermore, to make the controller robust and computationally inexpensive, a novel disturbance observer is designed to estimate the disturbance along with neural network approximation error and the time derivative of virtual control input. The effectiveness of the proposed approach is demonstrated through a simulation study on the third-order nonlinear system

    Testing quantum mechanics: a statistical approach

    Full text link
    As experiments continue to push the quantum-classical boundary using increasingly complex dynamical systems, the interpretation of experimental data becomes more and more challenging: when the observations are noisy, indirect, and limited, how can we be sure that we are observing quantum behavior? This tutorial highlights some of the difficulties in such experimental tests of quantum mechanics, using optomechanics as the central example, and discusses how the issues can be resolved using techniques from statistics and insights from quantum information theory.Comment: v1: 2 pages; v2: invited tutorial for Quantum Measurements and Quantum Metrology, substantial expansion of v1, 19 pages; v3: accepted; v4: corrected some errors, publishe

    Probabilistic data-driven methods for forecasting, identification and control

    Get PDF
    This dissertation presents contributions mainly in three different fields: system identification, probabilistic forecasting and stochastic control. Thanks to the concept of dissimilarity and by defining an appropriate dissimilarity function, it is shown that a family of predictors can be obtained. First, a predictor to compute nominal forecastings of a time-series or a dynamical system is presented. The effectiveness of the predictor is shown by means of a numerical example, where daily predictions of a stock index are computed. The obtained results turn out to be better than those obtained with popular machine learning techniques like Neural Networks. Similarly, the aforementioned dissimilarity function can be used to compute conditioned probability distributions. By means of the obtained distributions, interval predictions can be made by using the concept of quantiles. However, in order to do that, it is necessary to integrate the distribution for all the possible values of the output. As this numerical integration process is computationally expensive, an alternate method bypassing the computation of the probability distribution is also proposed. Not only is computationally cheaper but it also allows to compute prediction regions, which are the multivariate version of the interval predictions. Both methods present better results than other baseline approaches in a set of examples, including a stock forecasting example and the prediction of the Lorenz attractor. Furthermore, new methods to obtain models of nonlinear systems by means of input-output data are proposed. Two different model approaches are presented: a local data approach and a kernel-based approach. A kalman filter can be added to improve the quality of the predictions. It is shown that the forecasting performance of the proposed models is better than other machine learning methods in several examples, such as the forecasting of the sunspot number and the R¨ossler attractor. Also, as these models are suitable for Model Predictive Control (MPC), new MPC formulations are proposed. Thanks to the distinctive features of the proposed models, the nonlinear MPC problem can be posed as a simple quadratic programming problem. Finally, by means of a simulation example and a real experiment, it is shown that the controller performs adequately. On the other hand, in the field of stochastic control, several methods to bound the constraint violation rate of any controller under the presence of bounded or unbounded disturbances are presented. These can be used, for example, to tune some hyperparameters of the controller. Some simulation examples are proposed in order to show the functioning of the algorithms. One of these examples considers the management of a data center. Here, an energy-efficient MPC-inspired policy is developed in order to reduce the electricity consumption while keeping the quality of service at acceptable levels

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Aeronautical engineering: A continuing bibliography with indexes (supplement 267)

    Get PDF
    This bibliography lists 661 reports, articles, and other documents introduced into the NASA scientific and technical information system in June, 1991. Subject coverage includes design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; theoretical and applied aspects of aerodynamics and general fluid dynamics; electrical engineering; aircraft control; remote sensing; computer sciences; nuclear physics; and social sciences

    AFIT School of Engineering Contributions to Air Force Research and Technology. Calendar Year 1971

    Get PDF
    This report contains abstracts of Master of Science theses and Doctoral Dissertations completed during the 1971 calendar year at the School of Engineering, Air Force Institute of Technology

    Working Notes from the 1992 AAAI Spring Symposium on Practical Approaches to Scheduling and Planning

    Get PDF
    The symposium presented issues involved in the development of scheduling systems that can deal with resource and time limitations. To qualify, a system must be implemented and tested to some degree on non-trivial problems (ideally, on real-world problems). However, a system need not be fully deployed to qualify. Systems that schedule actions in terms of metric time constraints typically represent and reason about an external numeric clock or calendar and can be contrasted with those systems that represent time purely symbolically. The following topics are discussed: integrating planning and scheduling; integrating symbolic goals and numerical utilities; managing uncertainty; incremental rescheduling; managing limited computation time; anytime scheduling and planning algorithms, systems; dependency analysis and schedule reuse; management of schedule and plan execution; and incorporation of discrete event techniques

    Guidance, flight mechanics and trajectory optimization. Volume 11 - Guidance equations for orbital operations

    Get PDF
    Mathematical formulation of guidance equations and solutions for orbital space mission
    • …
    corecore