1,213 research outputs found

    A review of algorithms for medical image segmentation and their applications to the female pelvic cavity

    Get PDF
    This paper aims to make a review on the current segmentation algorithms used for medical images. Algorithms are classified according to their principal methodologies, namely the ones based on thresholds, the ones based on clustering techniques and the ones based on deformable models. The last type is focused on due to the intensive investigations into the deformable models that have been done in the last few decades. Typical algorithms of each type are discussed and the main ideas, application fields, advantages and disadvantages of each type are summarised. Experiments that apply these algorithms to segment the organs and tissues of the female pelvic cavity are presented to further illustrate their distinct characteristics. In the end, the main guidelines that should be considered for designing the segmentation algorithms of the pelvic cavity are proposed

    Anisotropy Across Fields and Scales

    Get PDF
    This open access book focuses on processing, modeling, and visualization of anisotropy information, which are often addressed by employing sophisticated mathematical constructs such as tensors and other higher-order descriptors. It also discusses adaptations of such constructs to problems encountered in seemingly dissimilar areas of medical imaging, physical sciences, and engineering. Featuring original research contributions as well as insightful reviews for scientists interested in handling anisotropy information, it covers topics such as pertinent geometric and algebraic properties of tensors and tensor fields, challenges faced in processing and visualizing different types of data, statistical techniques for data processing, and specific applications like mapping white-matter fiber tracts in the brain. The book helps readers grasp the current challenges in the field and provides information on the techniques devised to address them. Further, it facilitates the transfer of knowledge between different disciplines in order to advance the research frontiers in these areas. This multidisciplinary book presents, in part, the outcomes of the seventh in a series of Dagstuhl seminars devoted to visualization and processing of tensor fields and higher-order descriptors, which was held in Dagstuhl, Germany, on October 28–November 2, 2018

    Visual Exploration And Information Analytics Of High-Dimensional Medical Images

    Get PDF
    Data visualization has transformed how we analyze increasingly large and complex data sets. Advanced visual tools logically represent data in a way that communicates the most important information inherent within it and culminate the analysis with an insightful conclusion. Automated analysis disciplines - such as data mining, machine learning, and statistics - have traditionally been the most dominant fields for data analysis. It has been complemented with a near-ubiquitous adoption of specialized hardware and software environments that handle the storage, retrieval, and pre- and postprocessing of digital data. The addition of interactive visualization tools allows an active human participant in the model creation process. The advantage is a data-driven approach where the constraints and assumptions of the model can be explored and chosen based on human insight and confirmed on demand by the analytic system. This translates to a better understanding of data and a more effective knowledge discovery. This trend has become very popular across various domains, not limited to machine learning, simulation, computer vision, genetics, stock market, data mining, and geography. In this dissertation, we highlight the role of visualization within the context of medical image analysis in the field of neuroimaging. The analysis of brain images has uncovered amazing traits about its underlying dynamics. Multiple image modalities capture qualitatively different internal brain mechanisms and abstract it within the information space of that modality. Computational studies based on these modalities help correlate the high-level brain function measurements with abnormal human behavior. These functional maps are easily projected in the physical space through accurate 3-D brain reconstructions and visualized in excellent detail from different anatomical vantage points. Statistical models built for comparative analysis across subject groups test for significant variance within the features and localize abnormal behaviors contextualizing the high-level brain activity. Currently, the task of identifying the features is based on empirical evidence, and preparing data for testing is time-consuming. Correlations among features are usually ignored due to lack of insight. With a multitude of features available and with new emerging modalities appearing, the process of identifying the salient features and their interdependencies becomes more difficult to perceive. This limits the analysis only to certain discernible features, thus limiting human judgments regarding the most important process that governs the symptom and hinders prediction. These shortcomings can be addressed using an analytical system that leverages data-driven techniques for guiding the user toward discovering relevant hypotheses. The research contributions within this dissertation encompass multidisciplinary fields of study not limited to geometry processing, computer vision, and 3-D visualization. However, the principal achievement of this research is the design and development of an interactive system for multimodality integration of medical images. The research proceeds in various stages, which are important to reach the desired goal. The different stages are briefly described as follows: First, we develop a rigorous geometry computation framework for brain surface matching. The brain is a highly convoluted structure of closed topology. Surface parameterization explicitly captures the non-Euclidean geometry of the cortical surface and helps derive a more accurate registration of brain surfaces. We describe a technique based on conformal parameterization that creates a bijective mapping to the canonical domain, where surface operations can be performed with improved efficiency and feasibility. Subdividing the brain into a finite set of anatomical elements provides the structural basis for a categorical division of anatomical view points and a spatial context for statistical analysis. We present statistically significant results of our analysis into functional and morphological features for a variety of brain disorders. Second, we design and develop an intelligent and interactive system for visual analysis of brain disorders by utilizing the complete feature space across all modalities. Each subdivided anatomical unit is specialized by a vector of features that overlap within that element. The analytical framework provides the necessary interactivity for exploration of salient features and discovering relevant hypotheses. It provides visualization tools for confirming model results and an easy-to-use interface for manipulating parameters for feature selection and filtering. It provides coordinated display views for visualizing multiple features across multiple subject groups, visual representations for highlighting interdependencies and correlations between features, and an efficient data-management solution for maintaining provenance and issuing formal data queries to the back end

    Path finding on a spherical self-organizing map using distance transformations

    Get PDF
    Spatialization methods create visualizations that allow users to analyze high-dimensional data in an intuitive manner and facilitates the extraction of meaningful information. Just as geographic maps are simpli ed representations of geographic spaces, these visualizations are esssentially maps of abstract data spaces that are created through dimensionality reduction. While we are familiar with geographic maps for path planning/ nding applications, research into using maps of high-dimensional spaces for such purposes has been largely ignored. However, literature has shown that it is possible to use these maps to track temporal and state changes within a high-dimensional space. A popular dimensionality reduction method that produces a mapping for these purposes is the Self-Organizing Map. By using its topology preserving capabilities with a colour-based visualization method known as the U-Matrix, state transitions can be visualized as trajectories on the resulting mapping. Through these trajectories, one can gather information on the transition path between two points in the original high-dimensional state space. This raises the interesting question of whether or not the Self-Organizing Map can be used to discover the transition path between two points in an n-dimensional space. In this thesis, we use a spherically structured Self-Organizing Map called the Geodesic Self-Organizing Map for dimensionality reduction and the creation of a topological mapping that approximates the n-dimensional space. We rst present an intuitive method for a user to navigate the surface of the Geodesic SOM. A new application of the distance transformation algorithm is then proposed to compute the path between two points on the surface of the SOM, which corresponds to two points in the data space. Discussions will then follow on how this application could be improved using some form of surface shape analysis. The new approach presented in this thesis would then be evaluated by analyzing the results of using the Geodesic SOM for manifold embedding and by carrying out data analyses using carbon dioxide emissions data

    Path finding on a spherical self-organizing map using distance transformations

    Get PDF
    Spatialization methods create visualizations that allow users to analyze high-dimensional data in an intuitive manner and facilitates the extraction of meaningful information. Just as geographic maps are simpli ed representations of geographic spaces, these visualizations are esssentially maps of abstract data spaces that are created through dimensionality reduction. While we are familiar with geographic maps for path planning/ nding applications, research into using maps of high-dimensional spaces for such purposes has been largely ignored. However, literature has shown that it is possible to use these maps to track temporal and state changes within a high-dimensional space. A popular dimensionality reduction method that produces a mapping for these purposes is the Self-Organizing Map. By using its topology preserving capabilities with a colour-based visualization method known as the U-Matrix, state transitions can be visualized as trajectories on the resulting mapping. Through these trajectories, one can gather information on the transition path between two points in the original high-dimensional state space. This raises the interesting question of whether or not the Self-Organizing Map can be used to discover the transition path between two points in an n-dimensional space. In this thesis, we use a spherically structured Self-Organizing Map called the Geodesic Self-Organizing Map for dimensionality reduction and the creation of a topological mapping that approximates the n-dimensional space. We rst present an intuitive method for a user to navigate the surface of the Geodesic SOM. A new application of the distance transformation algorithm is then proposed to compute the path between two points on the surface of the SOM, which corresponds to two points in the data space. Discussions will then follow on how this application could be improved using some form of surface shape analysis. The new approach presented in this thesis would then be evaluated by analyzing the results of using the Geodesic SOM for manifold embedding and by carrying out data analyses using carbon dioxide emissions data

    Anisotropy Across Fields and Scales

    Get PDF
    This open access book focuses on processing, modeling, and visualization of anisotropy information, which are often addressed by employing sophisticated mathematical constructs such as tensors and other higher-order descriptors. It also discusses adaptations of such constructs to problems encountered in seemingly dissimilar areas of medical imaging, physical sciences, and engineering. Featuring original research contributions as well as insightful reviews for scientists interested in handling anisotropy information, it covers topics such as pertinent geometric and algebraic properties of tensors and tensor fields, challenges faced in processing and visualizing different types of data, statistical techniques for data processing, and specific applications like mapping white-matter fiber tracts in the brain. The book helps readers grasp the current challenges in the field and provides information on the techniques devised to address them. Further, it facilitates the transfer of knowledge between different disciplines in order to advance the research frontiers in these areas. This multidisciplinary book presents, in part, the outcomes of the seventh in a series of Dagstuhl seminars devoted to visualization and processing of tensor fields and higher-order descriptors, which was held in Dagstuhl, Germany, on October 28–November 2, 2018
    • …
    corecore