5,794 research outputs found

    Aerial-Ground collaborative sensing: Third-Person view for teleoperation

    Full text link
    Rapid deployment and operation are key requirements in time critical application, such as Search and Rescue (SaR). Efficiently teleoperated ground robots can support first-responders in such situations. However, first-person view teleoperation is sub-optimal in difficult terrains, while a third-person perspective can drastically increase teleoperation performance. Here, we propose a Micro Aerial Vehicle (MAV)-based system that can autonomously provide third-person perspective to ground robots. While our approach is based on local visual servoing, it further leverages the global localization of several ground robots to seamlessly transfer between these ground robots in GPS-denied environments. Therewith one MAV can support multiple ground robots on a demand basis. Furthermore, our system enables different visual detection regimes, and enhanced operability, and return-home functionality. We evaluate our system in real-world SaR scenarios.Comment: Accepted for publication in 2018 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    MScMS-II: an innovative IR-based indoor coordinate measuring system for large-scale metrology applications

    No full text
    According to the current great interest concerning large-scale metrology applications in many different fields of manufacturing industry, technologies and techniques for dimensional measurement have recently shown a substantial improvement. Ease-of-use, logistic and economic issues, as well as metrological performance are assuming a more and more important role among system requirements. This paper describes the architecture and the working principles of a novel infrared (IR) optical-based system, designed to perform low-cost and easy indoor coordinate measurements of large-size objects. The system consists of a distributed network-based layout, whose modularity allows fitting differently sized and shaped working volumes by adequately increasing the number of sensing units. Differently from existing spatially distributed metrological instruments, the remote sensor devices are intended to provide embedded data elaboration capabilities, in order to share the overall computational load. The overall system functionalities, including distributed layout configuration, network self-calibration, 3D point localization, and measurement data elaboration, are discussed. A preliminary metrological characterization of system performance, based on experimental testing, is also presente

    RGBD Datasets: Past, Present and Future

    Full text link
    Since the launch of the Microsoft Kinect, scores of RGBD datasets have been released. These have propelled advances in areas from reconstruction to gesture recognition. In this paper we explore the field, reviewing datasets across eight categories: semantics, object pose estimation, camera tracking, scene reconstruction, object tracking, human actions, faces and identification. By extracting relevant information in each category we help researchers to find appropriate data for their needs, and we consider which datasets have succeeded in driving computer vision forward and why. Finally, we examine the future of RGBD datasets. We identify key areas which are currently underexplored, and suggest that future directions may include synthetic data and dense reconstructions of static and dynamic scenes.Comment: 8 pages excluding references (CVPR style

    Ambient Intelligence for Next-Generation AR

    Full text link
    Next-generation augmented reality (AR) promises a high degree of context-awareness - a detailed knowledge of the environmental, user, social and system conditions in which an AR experience takes place. This will facilitate both the closer integration of the real and virtual worlds, and the provision of context-specific content or adaptations. However, environmental awareness in particular is challenging to achieve using AR devices alone; not only are these mobile devices' view of an environment spatially and temporally limited, but the data obtained by onboard sensors is frequently inaccurate and incomplete. This, combined with the fact that many aspects of core AR functionality and user experiences are impacted by properties of the real environment, motivates the use of ambient IoT devices, wireless sensors and actuators placed in the surrounding environment, for the measurement and optimization of environment properties. In this book chapter we categorize and examine the wide variety of ways in which these IoT sensors and actuators can support or enhance AR experiences, including quantitative insights and proof-of-concept systems that will inform the development of future solutions. We outline the challenges and opportunities associated with several important research directions which must be addressed to realize the full potential of next-generation AR.Comment: This is a preprint of a book chapter which will appear in the Springer Handbook of the Metavers
    • …
    corecore