14 research outputs found

    Epileptic focus localization using functional brain connectivity

    Get PDF

    Movement correction and clinical implementation of wearable magnetoencephalography (MEG)

    Get PDF
    Magnetoencephalography (MEG) is the non-invasive measurement of magnetic fields due to neuronal current flow. The magnitude of the magnetic fields (10 fT to 1000 fT) is millions of times smaller than the Earth’s static field. Consequently, highly sensitive magnetic sensors are required for MEG. Until recently, MEG systems have been based on sensors requiring cryogenic cooling. Hardware limitations from this cooling have made MEG systems large, immobile and expensive. In recent years, Optically Pumped Magnetometers (OPMs) have become viable sensors with which to measure neuromagnetic fields. These can be placed directly on the scalp. This wearability means that the participant is no longer required to remain still and the cost of the system, both financial and in terms of space, is generally lower. The freedom of movement opens up new neuroscientific and clinical applications. However, this new system is not without limitations. Movement in particular leads to artefacts unlike those previously seen in MEG; the OPM properties (gain, sensitive axis orientation, phase) are dependent on the ambient magnetic field at the sensor, which changes with position. In this thesis, we look at the impact of movement on OPM based MEG (OP-MEG) and how it can be reduced. In Chapter 2, we look into the cause of movement artefacts in OP-MEG, by mapping the spatial variation in the background magnetic field in our OP-MEG system. We show that the field varies both spatially and temporally, and that by modelling it we can reduce the interference in an OP-MEG recording. In Chapters 3 and 4, we correct for this changing field in real-time, first in simulation and then empirically. Based on the simulation results, we updated our empirical method to remove reliance on recording the position of the participant and to minimise time delays in providing the correction. Finally, in Chapters 5 and 6, we record interictal (between seizure) and ictal (seizure) OP-MEG in patients with epilepsy, while considering the impact movement has on the recordings and interictal event detection

    Implantable Asynchronous Epilectic Seizure Detector

    Get PDF
    RÉSUMÉ Plusieurs algorithmes de détection à faible consommation ont été proposés pour le traitement de l'épilepsie focale. La gestion de l'énergie dans ces microsystèmes est une question importante qui dépend principalement de la charge et de la décharge des capacités parasites des transistors et des courants de court-circuit pendant les commutations. Dans ce mémoire, un détecteur asynchrone de crise pour le traitement de l'épilepsie focale est présenté. Ce système fait partie d'un dispositif implantable intégré pour stopper la propagation de la crise. L'objectif de ce travail est de réduire la dissipation de puissance en évitant les transitions inutiles de signaux grâce à la technique du « clock tree » ; en conséquence, les transistors ne changent pas d'état transitoire dans ce mode d'économie d'énergie (période de surveillance des EEG intracrâniens), sauf si un événement anormal est détecté. Le dispositif intégré proposé comporte un bio-amplificateur en amont (front-end) à faible bruit, un processeur de signal numérique et un détecteur. Un délai variable et quatre détecteurs de fenêtres de tensions variables en parallèles sont utilisés pour extraire de l’information sur le déclenchement des crises. La sensibilité du détecteur est améliorée en optimisant les paramètres variables en fonction des activités de foyers épileptiques de chaque patient lors du début des crises. Le détecteur de crises asynchrone proposé a été implémenté premièrement en tant que prototype sur un circuit imprimé circulaire, ensuite nous l’avons intégré sur une seule puce dans la technologie standard CMOS 0.13μm. La puce fabriquée a été validée in vitro en utilisant un total de 34 enregistrements EEG intracrâniens avec la durée moyenne de chaque enregistrement de 1 min. Parmi ces jeux de données, 15 d’entre eux correspondaient à des enregistrements de crises, tandis que les 19 autres provenaient d’enregistrements variables de patients tels que de brèves crises électriques, des mouvements du corps et des variations durant le sommeil. Le système proposé a réalisé une performance de détection précise avec une sensibilité de 100% et 100% de spécificité pour ces 34 signaux icEEG enregistrés. Le délai de détection moyen était de 13,7 s après le début de la crise, bien avant l'apparition des manifestations cliniques, et une consommation d'énergie de 9 µW a été obtenue à partir d'essais expérimentaux.----------ABSTRACT Several power efficient detection algorithms have been proposed for treatment of focal epilepsy. Power management in these microsystems is an important issue which is mainly dependent on charging and discharging of the parasitic capacitances in transistors and short-circuit currents during switching. In this thesis, an asynchronous seizure detector for treatment of the focal epilepsy is presented. This system is part of an implantable integrated device to block the seizure progression. The objective of this work is reducing the power dissipation by avoiding the unnecessary signal transition and clock tree; as a result, transistors do not change their transient state in power saving mode (icEEG monitoring period) unless an abnormal event detected. The proposed integrated device contains a low noise front-end bioamplifier, a digital signal processor and a detector. A variable time frame and four concurrent variable voltage window detectors are used to extract seizure onset information. The sensitivity of the detector is enhanced by optimizing the variable parameters based on specific electrographic seizure onset activities of each patient. The proposed asynchronous seizure detector was first implemented as a prototype on a PCB and then integrated in standard 0.13 μm CMOS process. The fabricated chip was validated offline using a total of 34 intracranial EEG recordings with the average time duration of 1 min. 15 of these datasets corresponded to seizure activities while the remaining 19 signals were related to variable patient activities such as brief electrical seizures, body movement, and sleep patterns. The proposed system achieved an accurate detection performance with 100% sensitivity and 100 % specificity for these 34 recorded icEEG signals. The average detection delay was 13.7 s after seizure onset, well before the onset of the clinical manifestations. Finally, power consumption of the chip is 9 µW obtained from experimental tests

    A Research Platform for Artificial Neural Networks with Applications in Pediatric Epilepsy

    Get PDF
    This dissertation established a state-of-the-art programming tool for designing and training artificial neural networks (ANNs) and showed its applicability to brain research. The developed tool, called NeuralStudio, allows users without programming skills to conduct studies based on ANNs in a powerful and very user friendly interface. A series of unique features has been implemented in NeuralStudio, such as ROC analysis, cross-validation, network averaging, topology optimization, and optimization of the activation function’s slopes. It also included a Support Vector Machines module for comparison purposes. Once the tool was fully developed, it was applied to two studies in brain research. In the first study, the goal was to create and train an ANN to detect epileptic seizures from subdural EEG. This analysis involved extracting features from the spectral power in the gamma frequencies. In the second application, a unique method was devised to link EEG recordings to epileptic and non-epileptic subjects. The contribution of this method consisted of developing a descriptor matrix that can be used to represent any EEG file regarding its duration and the number of electrodes. The first study showed that the inter-electrode mean of the spectral power in the gamma frequencies and its duration above a specific threshold performs better than the other frequencies in seizure detection, exhibiting an accuracy of 95.90%, a sensitivity of 92.59%, and a specificity of 96.84%. The second study yielded that Hjorth’s parameter activity is sufficient to accurately relate EEG to epileptic and non-epileptic subjects. After testing, accuracy, sensitivity and specificity of the classifier were all above 0.9667. Statistical tests measured the superiority of activity at over 99.99 % certainty. It was demonstrated that 1) the spectral power in the gamma frequencies is highly effective in locating seizures from EEG and 2) activity can be used to link EEG recordings to epileptic and non-epileptic subjects. These two studies required high computational load and could be addressed thanks to NeuralStudio. From a medical perspective, both methods proved the merits of NeuralStudio in brain research applications. For its outstanding features, NeuralStudio has been recently awarded a patent (US patent No. 7502763)

    Epilepsy

    Get PDF
    With the vision of including authors from different parts of the world, different educational backgrounds, and offering open-access to their published work, InTech proudly presents the latest edited book in epilepsy research, Epilepsy: Histological, electroencephalographic, and psychological aspects. Here are twelve interesting and inspiring chapters dealing with basic molecular and cellular mechanisms underlying epileptic seizures, electroencephalographic findings, and neuropsychological, psychological, and psychiatric aspects of epileptic seizures, but non-epileptic as well

    Data reduction algorithms to enable long-term monitoring from low-power miniaturised wireless EEG systems

    No full text
    Objectives: The weight and volume of battery-powered wireless electroencephalography (EEG) systems are dominated by the batteries. Battery dimensions are in turn determined by the required energy capacity, which is derived from the system power consumption and required monitoring time. Data reduction may be carried out to reduce the amount of data transmitted and thus proportionally reduce the power consumption of the wireless transmitter, which dominates system power consumption. This thesis presents two new data selection algorithms that, in addition to achieving data reduction, also select EEG containing epileptic seizures and spikes that are important in diagnosis. Methods: The algorithms analyse short EEG sections, during monitoring, to determine the presence of candidate seizures or spikes. Phase information from different frequency components of the signal are used to detect spikes. For seizure detection, frequencies below 10 Hz are investigated for a relative increase in frequency and/or amplitude. Significant attention has also been given to metrics in order to accurately evaluate the performance of these algorithms for practical use in the proposed system. Additionally, signal processing techniques to emphasize seizures within the EEG and techniques to correct for broad-level amplitude variation in the EEG have been investigated. Results: The spike detection algorithm detected 80% of spikes whilst achieving 50% data reduction, when tested on 992 spikes from 105 hours of 10-channel scalp EEG data obtained from 25 adults. The seizure detection algorithm identified 94% of seizures selecting 80% of their duration for transmission and achieving 79% data reduction. It was tested on 34 seizures with a total duration of 4158 s in a database of over 168 hours of 16-channel scalp EEG obtained from 21 adults. These algorithms show great potential for longer monitoring times from miniaturised wireless EEG systems that would improve electroclinical diagnosis of patients
    corecore