124 research outputs found

    On Minimal Second-order IIR Bandpass Filters with Constrained Poles and Zeros

    Get PDF
    In this paper, several forms of infinite impulse response (IIR) bandpass filters with constrained poles and zeros are presented and compared. The comparison includes the filter structure, the frequency ranges and a number of controlled parameters that affect computational efforts. Using the relationship between bandpass and notch filters, the two presented filters were originally developed for notch filters. This paper also proposes a second-order IIR bandpass filter structure that constrains poles and zeros and can be used as a  minimal parameter adaptive digital second-order filter. The proposed filter has a wider frequency range and more flexibility in the range values of the adaptation parameters

    Digital signal processing algorithms and structures for adaptive line enhancing

    Get PDF
    Imperial Users onl

    Recent Advances in Variable Digital Filters

    Get PDF
    Variable digital filters are widely used in a number of applications of signal processing because of their capability of self-tuning frequency characteristics such as the cutoff frequency and the bandwidth. This chapter introduces recent advances on variable digital filters, focusing on the problems of design and realization, and application to adaptive filtering. In the topic on design and realization, we address two major approaches: one is the frequency transformation and the other is the multi-dimensional polynomial approximation of filter coefficients. In the topic on adaptive filtering, we introduce the details of adaptive band-pass/band-stop filtering that include the well-known adaptive notch filtering

    Adaptive notch filtering for tracking multiple complex sinusoid signals

    Get PDF
    This thesis is related to the field of digital signal processing; where the aim of this research is to develop features of an infinite impulse response adaptive notch filter capable of tracking multiple complex sinusoid signals. Adaptive notch filters are commonly used in: Radar, Sonar, and Communication systems, and have the ability to track the frequencies of real or complex sinusoid signals; thus removing noise from an estimate, and enhancing the performance of a system. This research programme began by implementing four currently proposed adaptive notch structures. These structures were simulated and compared: for tracking between two and four signals; however, in their current form they are only capable of tracking real sinusoid signals. Next, one of these structures is developed further, to facilitate the ability to track complex sinusoid signals. This original structure gives superior performance over Regalia's comparable structure under certain conditions, which has been proven by simulations and results. Complex adaptive notch filter structures generally contain two parameters: the first tracks a target frequency, then the second controls the adaptive notch filter's bandwidth. This thesis develops the notch filter, so that the bandwidth parameter can be adapted via a method of steepest ascent; and also investigates tracking complex-valued chirp signals. Lastly, stochastic search methods are considered; and particle swarm optimisation has been applied to reinitialise an adaptive notch filter, when tracking two signals; thus more quickly locating an unknown frequency, after the frequency of the complex sinusoid signal jumps

    A Novel Optimization Algorithm for Notch Bandwidth in Lattice Based Adaptive Filter for the Tracking of Interference in GPS

    Get PDF
    The weak signal levels experienced at the reception of the messages transmitted by navigation satellites, makes Global Positioning System (GPS) vulnerable to unintentional and intentional interference. This calls for appropriate modelling of GPS signal sources and jammers to assess the anti-jamming and interference mitigation capabilities of algorithms developed to be implemented for GPS receivers. Using a practical simulation model, this work presents an anti-jamming technique based on a novel algorithm. A fully adaptive lattice based notch filter is presented that provides better performance when compared to existing adaptive notch filter based techniques, chosen from the literature, in terms of convergence speed whilst delivering superior performance in the excision of the interference signal. To justify the superiority of the proposed technique, the noise and interference signal power is varied for in a wide dynamic range assessing jamming-to-noise density versus effective carrier-to-noise density performance at the output of the correlator

    An adaptive synchronous-reference-frame phase-locked loop for power quality improvement in a polluted utility grid

    Full text link
    Si el © es de IEEE cuando se deposite una versión de autor hay que poner el siguiente texto en "descripción": “© © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”The proper operation of grid-connected power electronics converters needs using a synchronization technique to estimate the phase of the grid voltage. The performance of this synchronization technique is related to the quality of the consumed or delivered electric power. The synchronous-reference-frame phase-locked loop (SRF-PLL) has been widely used due to its ease of operation and robust behavior. However, the estimated phase can have a considerable amount of unwanted ripple if the grid voltage disturbances are not properly rejected. The aim of this paper is to propose an adaptive SRF-PLL which strongly rejects these disturbances even if the fundamental frequency of the grid voltage varies. This is accomplished by using several adaptive infinite-impulse-response notch filters, implemented by means of an inherently stable Schur-lattice structure. This structure is perfectly suited to be programmed in fixed-point DSPs (i.e., it has high mapping precision, low roundoff accumulation, and suppression of quantization limit cycle oscillations). The proposed adaptive SRF-PLL has been tested by means of the TI TMS320F2812 DSP. The obtained experimental results show that the proposed synchronization method highly rejects the undesired harmonics even if the fundamental harmonic frequency of a highly polluted grid voltage abruptly varies. © 2011 IEEE.This work was supported by the Spanish Ministry of Science and Innovation under Grants ENE2009-13998-C02-02 and ENE2006-15521-C03-02.González Espín, FJ.; Figueres Amorós, E.; Garcerá Sanfeliú, G. (2012). An adaptive synchronous-reference-frame phase-locked loop for power quality improvement in a polluted utility grid. IEEE Transactions on Industrial Electronics. 59(6):2718-2731. doi:10.1109/TIE.2011.2166236S2718273159

    Adaptive Interference Mitigation in GPS Receivers

    Get PDF
    Satellite navigation systems (GNSS) are among the most complex radio-navigation systems, providing positioning, navigation, and timing (PNT) information. A growing number of public sector and commercial applications rely on the GNSS PNT service to support business growth, technical development, and the day-to-day operation of technology and socioeconomic systems. As GNSS signals have inherent limitations, they are highly vulnerable to intentional and unintentional interference. GNSS signals have spectral power densities far below ambient thermal noise. Consequently, GNSS receivers must meet high standards of reliability and integrity to be used within a broad spectrum of applications. GNSS receivers must employ effective interference mitigation techniques to ensure robust, accurate, and reliable PNT service. This research aims to evaluate the effectiveness of the Adaptive Notch Filter (ANF), a precorrelation mitigation technique that can be used to excise Continuous Wave Interference (CWI), hop-frequency and chirp-type interferences from GPS L1 signals. To mitigate unwanted interference, state-of-the-art ANFs typically adjust a single parameter, the notch centre frequency, and zeros are constrained extremely close to unity. Because of this, the notch centre frequency converges slowly to the target frequency. During this slow converge period, interference leaks into the acquisition block, thus sabotaging the operation of the acquisition block. Furthermore, if the CWI continuously hops within the GPS L1 in-band region, the subsequent interference frequency is locked onto after a delay, which means constant interference occurs in the receiver throughout the delay period. This research contributes to the field of interference mitigation at GNSS's receiver end using adaptive signal processing, predominately for GPS. This research can be divided into three stages. I first designed, modelled and developed a Simulink-based GPS L1 signal simulator, providing a homogenous test signal for existing and proposed interference mitigation algorithms. Simulink-based GPS L1 signal simulator provided great flexibility to change various parameters to generate GPS L1 signal under different conditions, e.g. Doppler Shift, code phase delay and amount of propagation degradation. Furthermore, I modelled three acquisition schemes for GPS signals and tested GPS L1 signals acquisition via coherent and non-coherent integration methods. As a next step, I modelled different types of interference signals precisely and implemented and evaluated existing adaptive notch filters in MATLAB in terms of Carrier to Noise Density (\u1d436/\u1d4410), Signal to Noise Ratio (SNR), Peak Degradation Metric, and Mean Square Error (MSE) at the output of the acquisition module in order to create benchmarks. Finally, I designed, developed and implemented a novel algorithm that simultaneously adapts both coefficients in lattice-based ANF. Mathematically, I derived the full-gradient term for the notch's bandwidth parameter adaptation and developed a framework for simultaneously adapting both coefficients of a lattice-based adaptive notch filter. I evaluated the performance of existing and proposed interference mitigation techniques under different types of interference signals. Moreover, I critically analysed different internal signals within the ANF structure in order to develop a new threshold parameter that resets the notch bandwidth at the start of each subsequent interference frequency. As a result, I further reduce the complexity of the structural implementation of lattice-based ANF, allowing for efficient hardware realisation and lower computational costs. It is concluded from extensive simulation results that the proposed fully adaptive lattice-based provides better interference mitigation performance and superior convergence properties to target frequency compared to traditional ANF algorithms. It is demonstrated that by employing the proposed algorithm, a receiver is able to operate with a higher dynamic range of JNR than is possible with existing methods. This research also presents the design and MATLAB implementation of a parameterisable Complex Adaptive Notch Filer (CANF). Present analysis on higher order CANF for detecting and mitigating various types of interference for complex baseband GPS L1 signals. In the end, further research was conducted to suppress interference in the GPS L1 signal by exploiting autocorrelation properties and discarding some portion of the main lobe of the GPS L1 signal. It is shown that by removing 30% spectrum of the main lobe, either from left, right, or centre, the GPS L1 signal is still acquirable

    Adaptive notch filters from lossless bounded real all-pass functions for frequency tracking and line enhancing

    Get PDF
    The authors introduce constrained adaptive notch filters which are synthesized from a numerically robust all-pass filter section. This section is realized as a structurally lossless bounded real function which is canonic in both multipliers and delay elements. The notch filter structures admit orthogonal tuning of their notch frequency and bandwidth. For the two structures, frequency tracking and signal enhancement outputs are derived. The mirror image pair of polynomials present in a real all-pass transfer function is shown to yield significant simplification in the generation of the necessary gradient terms used in parameter adaptation. A cascade of such structures is shown to be suitable for tracking multiple sinusoids. Simulation results verify the utility of these structures for frequency trackin
    corecore