5,034 research outputs found

    Standardization Roadmap for Unmanned Aircraft Systems, Version 1.0

    Get PDF
    This Standardization Roadmap for Unmanned Aircraft Systems, Version 1.0 (“roadmap”) represents the culmination of the UASSC’s work to identify existing standards and standards in development, assess gaps, and make recommendations for priority areas where there is a perceived need for additional standardization and/or pre-standardization R&D. The roadmap has examined 64 issue areas, identified a total of 60 gaps and corresponding recommendations across the topical areas of airworthiness; flight operations (both general concerns and application-specific ones including critical infrastructure inspections, commercial services, and public safety operations); and personnel training, qualifications, and certification. Of that total, 40 gaps/recommendations have been identified as high priority, 17 as medium priority, and 3 as low priority. A “gap” means no published standard or specification exists that covers the particular issue in question. In 36 cases, additional R&D is needed. The hope is that the roadmap will be broadly adopted by the standards community and that it will facilitate a more coherent and coordinated approach to the future development of standards for UAS. To that end, it is envisioned that the roadmap will be widely promoted and discussed over the course of the coming year, to assess progress on its implementation and to identify emerging issues that require further elaboration

    Voyager spacecraft phase B, task D. Volume 2 - System description. Book 5 - Final report

    Get PDF
    Voyager spacecraft design standards, and operational support and mission-dependent equipment requirement

    James Webb Space Telescope - L2 Communications for Science Data Processing

    Get PDF
    JWST is the first NASA mission at the second Lagrange point (L2) to identify the need for data rates higher than 10 megabits per second (Mbps). JWST will produce approximately 235 Gigabits of science data every day that will be downlinked to the Deep Space Network (DSN). To get the data rates desired required moving away from X-band frequencies to Ka-band frequencies. To accomplish this transition, the DSN is upgrading its infrastructure. This new range of frequencies are becoming the new standard for high data rate science missions at L2. With the new frequency range, the issues of alternatives antenna deployment, off nominal scenarios, NASA implementation of the Ka-band 26 GHz, and navigation requirements will be discussed in this paper. JWST is also using Consultative Committee for Space Data Systems (CCSDS) standard process for reliable file transfer using CCSDS File Delivery Protocol (CFDP). For JWST the use of the CFDP protocol provides level zero processing at the DSN site. This paper will address NASA implementations of Ground Stations in support of Ka-band 26 GHz and lesson learned from implementing a file base (CFDP) protocol operational system

    Standardization Roadmap for Unmanned Aircraft Systems, Version 2.0

    Get PDF
    This Standardization Roadmap for Unmanned Aircraft Systems, Version 2.0 (“roadmap”) is an update to version 1.0 of this document published in December 2018. It identifies existing standards and standards in development, assesses gaps, and makes recommendations for priority areas where there is a perceived need for additional standardization and/or pre-standardization R&D. The roadmap has examined 78 issue areas, identified a total of 71 open gaps and corresponding recommendations across the topical areas of airworthiness; flight operations (both general concerns and application-specific ones including critical infrastructure inspections, commercial services, and public safety operations); and personnel training, qualifications, and certification. Of that total, 47 gaps/recommendations have been identified as high priority, 21 as medium priority, and 3 as low priority. A “gap” means no published standard or specification exists that covers the particular issue in question. In 53 cases, additional R&D is needed. As with the earlier version of this document, the hope is that the roadmap will be broadly adopted by the standards community and that it will facilitate a more coherent and coordinated approach to the future development of standards for UAS. To that end, it is envisioned that the roadmap will continue to be promoted in the coming year. It is also envisioned that a mechanism may be established to assess progress on its implementation

    STS-74 Space Shuttle Mission Report

    Get PDF
    The STS-74 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-third flight of the Space Shuttle Program, the forty-eighth flight since the return-to-flight, and the fifteenth flight of the Orbiter Atlantis (OV-104). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-74; three Phase 11 SSME's that were designated as serial numbers 2012, 2026, and 2032 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-076. The RSRM's, designated RSRM-51, were installed in each SRB and the individual RSRM's were designated as 360TO51 A for the left SRB, and 360TO51 B for the right SRB. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and perform life sciences investigations. The Russian Docking Module (DM) was berthed onto the Orbiter Docking System (ODS) using the Remote Manipulator System (RMS), and the Orbiter docked to the Mir with the DM. When separating from the Mir, the Orbiter undocked, leaving the DM attached to the Mir. The two solar arrays, mounted on the DM, were delivered for future Russian installation to the Mir. The secondary objectives of the flight were to perform the operations necessary to fulfill the requirements of the GLO experiment (GLO-4)/Photogrammetric Appendage Structural Dynamics Experiment Payload (PASDE) (GPP), the IMAX Cargo Bay Camera (ICBC), and the Shuttle Amateur Radio Experiment-2 (SAREX-2). Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (GMT)) and mission elapsed time (MET)

    Does the Geographic Information Systems Benefit the Insurance Industry?

    Get PDF
    This research is intended to determine if the insurance companies are benefiting from Geographic Information System technology in the insurance industry. This is based on the consumers\u27 point of view through the use of research, survey results, and technology at the insurance company\u27s disposal. Today, this technology is used in many different areas including renewable energy, delivery business, and city planning. Insurance companies use this technology in order to determine safe driving habits. Some examples include Progressive\u27s Snapshot and State Farm\u27s In-Drive. These devices are used to collect data on response time, speed, and breaking. This is a possible concern due to methods like Elastic Pathing which allows consumers\u27 locations to be predicted over a period of time. Overall, the average survey responses were negative towards the implementation of the data collection devices in consumer vehicles. Consumers felt the device should not be implemented within their vehicles collecting data on their driving behaviors

    On Representative Spaceflight Instrument and Associated Instrument Sensor Web Framework

    Get PDF
    Sensor Web-based adaptation and sharing of space flight mission resources, including those of the Space-Ground and Control-User communication segment, could greatly benefit from utilization of heritage Internet Protocols and devices applied for Spaceflight (SpaceIP). This had been successfully demonstrated by a few recent spaceflight experiments. However, while terrestrial applications of Internet protocols are well developed and understood (mostly due to billions of dollars in investments by the military and industry), the spaceflight application of Internet protocols is still in its infancy. Progress in the developments of SpaceIP-enabled instrument components will largely determine the SpaceIP utilization of those investments and acceptance in years to come. Likewise SpaceIP, the development of commercial real-time and instrument colocated computational resources, data compression and storage, can be enabled on-board a spacecraft and, in turn, support a powerful application to Sensor Web-based design of a spaceflight instrument. Sensor Web-enabled reconfiguration and adaptation of structures for hardware resources and information systems will commence application of Field Programmable Arrays (FPGA) and other aerospace programmable logic devices for what this technology was intended. These are a few obvious potential benefits of Sensor Web technologies for spaceflight applications. However, they are still waiting to be explored. This is because there is a need for a new approach to spaceflight instrumentation in order to make these mature sensor web technologies applicable for spaceflight. In this paper we present an approach in developing related and enabling spaceflight instrument-level technologies based on the new concept of a representative spaceflight Instrument Sensor Web (ISW)

    Modular event-driven unmanned aerial vehicles control platform

    Get PDF
    Hoje em dia, os drones estão-se a tornar cada vez mais comuns nas nossas vidas diárias. Com a agilidade, acessibilidade e diversidade dos drones, eles são uma excelente plataforma para transportar dispositivos (p.ex., conjunto de sensores, câmeras, unidades computacionais de pequena dimensão). Assim sendo, são uma excelente ferramenta para tarefas como: explorar e estudar áreas perigosas, monitorizar campos de agricultura, ajudar na detecção e combate de incêndios ou vigiar multidões. Para realizar tais tarefas, ferramentas de automação e integração são essenciais, para que o desenvolvimento se concentre na própria aplicação e não nos problemas relacionados com a integração e automação do sistema do drone. Os drones atualmente disponiveis não são capazes de lidar com tais complexidades de forma tão transparente. Por exemplo, certos niveis de automação são ja possiveis, mas requerem hardware e software especificos do fornecedor; no que toca a integração, alguns já supportam SDK ou API para interagir com o drone, mas mais uma vez com a inconveniência de necessitar de conhecimento prévio sobre os sistemas dos drones. Para responder a estas necessidades, esta tese propõe uma plataforma modular de controlo baseada em eventos para abstrair os processos de automação e integração da complexidade subjacentes aos drones. Enquanto que a plataforma permite que as aplicações controlem e interajam com os drones, a sua complexidade é resolvida dentro da plataforma, simplificando o processo de integração. Além disso, com a plataforma proposta, a automação e funcionalidades do drone podem ser estendidas para estender as funcionalidades de drones mais limitados. A plataforma desenvolvida foi testada em diferentes cenários, tanto ao nível das suas funcionalidades como ao nível da analise de desempenho. Os resultados mostram que, além das funcionalidades suportadas, a plataforma consegue suportar o controlo e gestão de pelo menos até 64 drones em simultâneo sem ter modificações significativas nos atrasos de comunicação e throughput.Nowadays, drones are becoming more common in our daily lives. Since drones are agile, a ordable and diverse, they make an excellent platform to carry devices around (e.g., sensor arrays, cameras, small computers). With these capabilities, they become an excellent tool for tasks like: explore and study hazardous areas, agriculture monitoring, help on the detection and ght in res, and crowd surveillance. To perform such tasks, automation and integration tools are a must have, so that the development can focus on the application itself and not on the issues related with the integration and automation of the drone system. Current available drones are not capable of properly handling such complexities in a seamless way. For instance, some levels of automation are already possible, but require vendor speci c hardware and software; for integration, some o er SDK or API interactions, but once again with the inconvenience of requiring extensive knowledge about drone systems to implement. To address these issues, this thesis proposes a modular event-driven control platform to abstract automation and integration processes from the underlying complexities of the drones, while the platform lets the applications control and interact with the drones. The drones' complexities are resolved within the platform, therefore simplifying integration process. Moreover, with the proposed platform, drone automation and functionality can be extended across distinct brands of drones, while some may already support some features, others may not, and in that case the platform modules may intervene to extend the features of less capable drones. The developed platform has been tested in di erent scenarios, such as in terms of its functionalities and in terms of performance analysis. The results show that, besides the supported functionalities, the platform is able to handle the control and management of at last 64 simultaneous drones without signi cant changes in the communication delays and throughput.Mestrado em Engenharia Informátic

    Skylab mission report, second visit

    Get PDF
    An evaluation is presented of the operational and engineering aspects of the second Skylab flight. Other areas described include: the performance of experimental hardware; the crew's evaluation of the flight; medical aspects; and hardware anomalies

    Space Transportation System and associated payloads: Glossary, acronyms, and abbreviations

    Get PDF
    A collection of acronyms in everyday use concerning shuttle activities is presented. A glossary of terms pertaining to the Space Transportation System is included
    corecore