2,952 research outputs found

    Extended Object Tracking: Introduction, Overview and Applications

    Full text link
    This article provides an elaborate overview of current research in extended object tracking. We provide a clear definition of the extended object tracking problem and discuss its delimitation to other types of object tracking. Next, different aspects of extended object modelling are extensively discussed. Subsequently, we give a tutorial introduction to two basic and well used extended object tracking approaches - the random matrix approach and the Kalman filter-based approach for star-convex shapes. The next part treats the tracking of multiple extended objects and elaborates how the large number of feasible association hypotheses can be tackled using both Random Finite Set (RFS) and Non-RFS multi-object trackers. The article concludes with a summary of current applications, where four example applications involving camera, X-band radar, light detection and ranging (lidar), red-green-blue-depth (RGB-D) sensors are highlighted.Comment: 30 pages, 19 figure

    Supporting User-Defined Functions on Uncertain Data

    Get PDF
    Uncertain data management has become crucial in many sensing and scientific applications. As user-defined functions (UDFs) become widely used in these applications, an important task is to capture result uncertainty for queries that evaluate UDFs on uncertain data. In this work, we provide a general framework for supporting UDFs on uncertain data. Specifically, we propose a learning approach based on Gaussian processes (GPs) to compute approximate output distributions of a UDF when evaluated on uncertain input, with guaranteed error bounds. We also devise an online algorithm to compute such output distributions, which employs a suite of optimizations to improve accuracy and performance. Our evaluation using both real-world and synthetic functions shows that our proposed GP approach can outperform the state-of-the-art sampling approach with up to two orders of magnitude improvement for a variety of UDFs. 1

    Probabilistic Framework for Sensor Management

    Get PDF
    A probabilistic sensor management framework is introduced, which maximizes the utility of sensor systems with many different sensing modalities by dynamically configuring the sensor system in the most beneficial way. For this purpose, techniques from stochastic control and Bayesian estimation are combined such that long-term effects of possible sensor configurations and stochastic uncertainties resulting from noisy measurements can be incorporated into the sensor management decisions

    Structural assessment under uncertain parameters via the interval optimization method using the slime mold algorithm

    Get PDF
    Damage detection of civil and mechanical structures based on measured modal parameters using model updating schemes has received increasing attention in recent years. In this study, for uncertainty-oriented damage identification, a non-probabilistic structural damage identification (NSDI) technique based on an optimization algorithm and interval mathematics is proposed. In order to take into account the uncertainty quantification, the elastic modulus is described as unknown-but-bounded interval values and the proposed new scheme determines the upper and lower bounds of the damage index. In this method, the interval bounds can provide supports for structural health diagnosis under uncertain conditions by considering the uncertainties in the variables of optimization algorithm. The model updating scheme is subsequently used to predict the interval-bound of the Elemental Stiffness Parameter (ESP). The slime mold algorithm (SMA) is used as the main algorithm for model updating. In addition, in this study, an enhanced variant of SMA (ESMA) is developed, which removes unchanged variables after a defined number of iterations. The method is implemented on three well-known numerical examples in the domain of structural health monitoring under single damage and multi-damage scenarios with different degrees of uncertainty. The results show that the proposed NSDI methodology has reduced computation time, by at least 30%, in comparison with the probabilistic methods. Furthermore, ESMA has the capability to detect damaged elements with higher certainty and lower computation cost in comparison with the original SMA..Peer ReviewedPostprint (published version

    Predictive Maneuver Planning and Control of an Autonomous Vehicle in Multi-Vehicle Traffic with Observation Uncertainty

    Get PDF
    Autonomous vehicle technology is a promising development for improving the safety, efficiency and environmental impact of on-road transportation systems. However, the task of guiding an autonomous vehicle by rapidly and systematically accommodating the plethora of changing constraints, e.g. of avoiding multiple stationary and moving obstacles, obeying traffic rules, signals and so on as well as the uncertain state observation due to sensor imperfections, remains a major challenge. This dissertation attempts to address this challenge via designing a robust and efficient predictive motion planning framework that can generate the appropriate vehicle maneuvers (selecting and tracking specific lanes, and related speed references) as well as the constituent motion trajectories while considering the differential vehicle kinematics of the controlled vehicle and other constraints of operating in public traffic. The main framework combines a finite state machine (FSM)-based maneuver decision module with a model predictive control (MPC)-based trajectory planner. Based on the prediction of the traffic environment, reference speeds are assigned to each lane in accordance with the detection of objects during measurement update. The lane selection decisions themselves are then incorporated within the MPC optimization. The on-line maneuver/motion planning effort for autonomous vehicles in public traffic is a non-convex problem due to the multiple collision avoidance constraints with overlapping areas, lane boundaries, and nonlinear vehicle-road dynamics constraints. This dissertation proposes and derives some remedies for these challenges within the planning framework to improve the feasibility and optimality of the solution. Specifically, it introduces vehicle grouping notions and derives conservative and smooth algebraic models to describe the overlapped space of several individual infeasible spaces and help prevent the optimization from falling into undesired local minima. Furthermore, in certain situations, a forced objective selection strategy is needed and adopted to help the optimization jump out of local minima. Furthermore, the dissertation considers stochastic uncertainties prevalent in dynamic and complex traffic and incorporate them with in the predictive planning and control framework. To this end, Bayesian filters are implemented to estimate the uncertainties in object motions and then propagate them into the prediction horizon. Then, a pair-wise probabilistic collision condition is defined for objects with non-negligible geometrical shape/sizes and computationally efficient and conservative forms are derived to efficiently and analytically approximate the involved multi-variate integrals. The probabilistic collision evaluation is then applied within a vehicle grouping algorithms to cluster the object vehicles with closeness in positions and speeds and eventually within the stochastic predictive maneuver planner framework to tighten the chanced-constraints given a deterministic confidence margin. It is argued that these steps make the planning problem tractable for real-time implementation on autonomously controlled vehicles

    Statistical modelling of algorithms for signal processing in systems based on environment perception

    Get PDF
    One cornerstone for realising automated driving systems is an appropriate handling of uncertainties in the environment perception and situation interpretation. Uncertainties arise due to noisy sensor measurements or the unknown future evolution of a traffic situation. This work contributes to the understanding of these uncertainties by modelling and propagating them with parametric probability distributions
    corecore