269 research outputs found

    A Biological Global Positioning System: Considerations for Tracking Stem Cell Behaviors in the Whole Body

    Get PDF
    Many recent research studies have proposed stem cell therapy as a treatment for cancer, spinal cord injuries, brain damage, cardiovascular disease, and other conditions. Some of these experimental therapies have been tested in small animals and, in rare cases, in humans. Medical researchers anticipate extensive clinical applications of stem cell therapy in the future. The lack of basic knowledge concerning basic stem cell biology-survival, migration, differentiation, integration in a real time manner when transplanted into damaged CNS remains an absolute bottleneck for attempt to design stem cell therapies for CNS diseases. A major challenge to the development of clinical applied stem cell therapy in medical practice remains the lack of efficient stem cell tracking methods. As a result, the fate of the vast majority of stem cells transplanted in the human central nervous system (CNS), particularly in the detrimental effects, remains unknown. The paucity of knowledge concerning basic stem cell biology—survival, migration, differentiation, integration in real-time when transplanted into damaged CNS remains a bottleneck in the attempt to design stem cell therapies for CNS diseases. Even though excellent histological techniques remain as the gold standard, no good in vivo techniques are currently available to assess the transplanted graft for migration, differentiation, or survival. To address these issues, herein we propose strategies to investigate the lineage fate determination of derived human embryonic stem cells (hESC) transplanted in vivo into the CNS. Here, we describe a comprehensive biological Global Positioning System (bGPS) to track transplanted stem cells. But, first, we review, four currently used standard methods for tracking stem cells in vivo: magnetic resonance imaging (MRI), bioluminescence imaging (BLI), positron emission tomography (PET) imaging and fluorescence imaging (FLI) with quantum dots. We summarize these modalities and propose criteria that can be employed to rank the practical usefulness for specific applications. Based on the results of this review, we argue that additional qualities are still needed to advance these modalities toward clinical applications. We then discuss an ideal procedure for labeling and tracking stem cells in vivo, finally, we present a novel imaging system based on our experiments

    Stem Cell Tracking by Nanotechnologies

    Get PDF
    Advances in stem cell research have provided important understanding of the cell biology and offered great promise for developing new strategies for tissue regeneration. The beneficial effects of stem cell therapy depend also by the development of new approachs for the track of stem cells in living subjects over time after transplantation. Recent developments in the use of nanotechnologies have contributed to advance of the high-resolution in vivo imaging methods, including positron emission tomography (PET), single-photon emission tomography (SPECT), magnetic resonance (MR) imaging, and X-Ray computed microtomography (microCT). This review examines the use of nanotechnologies for stem cell tracking

    A safe and effective magnetic labeling protocol for MRI-based tracking of human adult neural stem cells

    Get PDF
    Magnetic resonance imaging (MRI) provides a unique tool for in vivo visualization and tracking of stem cells in the brain. This is of particular importance when assessing safety of experimental cell treatments in the preclinical or clinical setup. Yet, specific imaging requires an efficient and non-perturbing cellular magnetic labeling which precludes adverse effects of the tag, e.g., the impact of iron-oxide-nanoparticles on the critical differentiation and integration processes of the respective stem cell population investigated. In this study we investigated the effects of very small superparamagnetic iron oxide particle (VSOP) labeling on viability, stemness, and neuronal differentiation potential of primary human adult neural stem cells (haNSCs). Cytoplasmic VSOP incorporation massively reduced the transverse relaxation time T2, an important parameter determining MR contrast. Cells retained cytoplasmic label for at least a month, indicating stable incorporation, a necessity for long-term imaging. Using a clinical 3T MRI, 1 × 103 haNSCs were visualized upon injection in a gel phantom, but detection limit was much lower (5 × 104 cells) in layer phantoms and using an imaging protocol feasible in a clinical scenario. Transcriptional analysis and fluorescence immunocytochemistry did not reveal a detrimental impact of VSOP labeling on important parameters of cellular physiology with cellular viability, stemness and neuronal differentiation potential remaining unaffected. This represents a pivotal prerequisite with respect to clinical application of this method

    Clinical Stem Cell Imaging and In vivo Tracking

    Get PDF

    Iron Labeling and Pre-Clinical MRI Visualization of Therapeutic Human Neural Stem Cells in a Murine Glioma Model

    Get PDF
    Treatment strategies for the highly invasive brain tumor, glioblastoma multiforme, require that cells which have invaded into the surrounding brain be specifically targeted. The inherent tumor-tropism of neural stem cells (NSCs) to primary and invasive tumor foci can be exploited to deliver therapeutics to invasive brain tumor cells in humans. Use of the strategy of converting prodrug to drug via therapeutic transgenes delivered by immortalized therapeutic NSC lines have shown efficacy in animal models. Thus therapeutic NSCs are being proposed for use in human brain tumor clinical trials. In the context of NSC-based therapies, MRI can be used both to non-invasively follow dynamic spatio-temporal patterns of the NSC tumor targeting allowing for the optimization of treatment strategies and to assess efficacy of the therapy. Iron-labeling of cells allows their presence to be visualized and tracked by MRI. Thus we aimed to iron-label therapeutic NSCs without affecting their cellular physiology using a method likely to gain United States Federal Drug Administration (FDA) approval.For human use, the characteristics of therapeutic Neural Stem Cells must be clearly defined with any pertubation to the cell including iron labeling requiring reanalysis of cellular physiology. Here, we studied the effect of iron-loading of the therapeutic NSCs, with ferumoxide-protamine sulfate complex (FE-Pro) on viability, proliferation, migratory properties and transgene expression, when compared to non-labeled cells. FE-Pro labeled NSCs were imaged by MRI at tumor sites, after intracranial administration into the hemisphere contralateral to the tumor, in an orthotopic human glioma xenograft mouse model.FE-Pro labeled NSCs retain their proliferative status, tumor tropism, and maintain stem cell character, while allowing in vivo cellular MRI tracking at 7 Tesla, to monitor their real-time migration and distribution at brain tumor sites. Of significance, this work directly supports the use of FE-Pro-labeled NSCs for real-time tracking in the clinical trial under development: "A Pilot Feasibility Study of Oral 5-Fluorocytosine and Genetically modified Neural Stem Cells Expressing Escherichia coli Cytosine Deaminase for Treatment of Recurrent High-Grade Gliomas"

    Stem cell tracking with nanoparticles for regenerative medicine purposes: An overview

    Get PDF
    Accurate and noninvasive stem cell tracking is one of the most important needs in regenerative medicine to determine both stem cell destinations and final differentiation fates, thus allowing a more detailed picture of the mechanisms involved in these therapies. Given the great importance and advances in the field of nanotechnology for stem cell imaging, currently, several nanoparticles have become standardized products and have been undergoing fast commercialization. This review has been intended to summarize the current use of different engineered nanoparticles in stem cell tracking for regenerative medicine purposes, in particular by detailing their main features and exploring their biosafety aspects, the first step for clinical application. Moreover, this review has summarized the advantages and applications of stem cell tracking with nanoparticles in experimental and preclinical studies and investigated present limitations for their employment in the clinical setting

    Developing multi-modal imaging agents for stem cell tracking

    Get PDF
    Clinical trials using stem cells as a regenerative therapy or a delivery vehicle for anti-cancer agents have been increasing but the outcomes are highly variable. In vivo imaging of stem cell delivery to target organs will help improve their therapeutic efficacy. However, a single imaging modality cannot provide the complete answer. The work in this thesis aims to develop a multi-modal imaging approach to overcome the limitations of each modality. To understand the distribution pattern of transplanted stem cells in vivo, luciferase expressing adipocyte derived mesenchymal stem cells (ADSCs) were labelled with novel bimodal (nuclear/magnetic resonance imaging) nanoparticles and the following hypotheses were tested; 1) that the distribution pattern of transplanted ADSCs would be different between venous and arterial routes, 2) that the arterial route would provide a more efficient way of delivering ADSC to tumours. In addition, ultrasound-guided renal artery injection was developed to improve stem cell delivery to kidney and the efficiency of this injection was assessed using photoacoustic and bioluminescence imaging. Moreover, the applicability of gold nanoparticles (GNP) as cell tracking agents was explored using multi-modal imaging. Results demonstrated the advantages of multi-modal imaging in assessing different cell distribution patterns after two systemic injections and confirmed that the arterial route was more efficient in delivering ADSCs to tumours. The assessment of cell localisation and viability in the kidney suggests that the level of cell engraftment improved after ultrasound-guided renal artery injection. Multi-modal imaging results indicated that GNPs are a promising cell tracking agent for computed tomography but further studies are required to define their specific applications. In conclusion, this work has demonstrated the successful application of multi-modal imaging for stem cell tracking in different organs. The findings from this thesis proved that combining the strengths of each modality can provide greater insight into cell migration and distribution
    • …
    corecore