3,971 research outputs found

    Enhanced tracking and recognition of moving objects by reasoning about spatio-temporal continuity.

    Get PDF
    A framework for the logical and statistical analysis and annotation of dynamic scenes containing occlusion and other uncertainties is presented. This framework consists of three elements; an object tracker module, an object recognition/classification module and a logical consistency, ambiguity and error reasoning engine. The principle behind the object tracker and object recognition modules is to reduce error by increasing ambiguity (by merging objects in close proximity and presenting multiple hypotheses). The reasoning engine deals with error, ambiguity and occlusion in a unified framework to produce a hypothesis that satisfies fundamental constraints on the spatio-temporal continuity of objects. Our algorithm finds a globally consistent model of an extended video sequence that is maximally supported by a voting function based on the output of a statistical classifier. The system results in an annotation that is significantly more accurate than what would be obtained by frame-by-frame evaluation of the classifier output. The framework has been implemented and applied successfully to the analysis of team sports with a single camera. Key words: Visua

    Online real-time crowd behavior detection in video sequences

    Get PDF
    Automatically detecting events in crowded scenes is a challenging task in Computer Vision. A number of offline approaches have been proposed for solving the problem of crowd behavior detection, however the offline assumption limits their application in real-world video surveillance systems. In this paper, we propose an online and real-time method for detecting events in crowded video sequences. The proposed approach is based on the combination of visual feature extraction and image segmentation and it works without the need of a training phase. A quantitative experimental evaluation has been carried out on multiple publicly available video sequences, containing data from various crowd scenarios and different types of events, to demonstrate the effectiveness of the approach

    Traffic monitoring using image processing : a thesis presented in partial fulfillment of the requirements for the degree of Master of Engineering in Information and Telecommunications Engineering at Massey University, Palmerston North, New Zealand

    Get PDF
    Traffic monitoring involves the collection of data describing the characteristics of vehicles and their movements. Such data may be used for automatic tolls, congestion and incident detection, law enforcement, and road capacity planning etc. With the recent advances in Computer Vision technology, videos can be analysed automatically and relevant information can be extracted for particular applications. Automatic surveillance using video cameras with image processing technique is becoming a powerful and useful technology for traffic monitoring. In this research project, a video image processing system that has the potential to be developed for real-time application is developed for traffic monitoring including vehicle tracking, counting, and classification. A heuristic approach is applied in developing this system. The system is divided into several parts, and several different functional components have been built and tested using some traffic video sequences. Evaluations are carried out to show that this system is robust and can be developed towards real-time applications

    Aerial Vehicle Tracking by Adaptive Fusion of Hyperspectral Likelihood Maps

    Full text link
    Hyperspectral cameras can provide unique spectral signatures for consistently distinguishing materials that can be used to solve surveillance tasks. In this paper, we propose a novel real-time hyperspectral likelihood maps-aided tracking method (HLT) inspired by an adaptive hyperspectral sensor. A moving object tracking system generally consists of registration, object detection, and tracking modules. We focus on the target detection part and remove the necessity to build any offline classifiers and tune a large amount of hyperparameters, instead learning a generative target model in an online manner for hyperspectral channels ranging from visible to infrared wavelengths. The key idea is that, our adaptive fusion method can combine likelihood maps from multiple bands of hyperspectral imagery into one single more distinctive representation increasing the margin between mean value of foreground and background pixels in the fused map. Experimental results show that the HLT not only outperforms all established fusion methods but is on par with the current state-of-the-art hyperspectral target tracking frameworks.Comment: Accepted at the International Conference on Computer Vision and Pattern Recognition Workshops, 201

    Enabling Depth-driven Visual Attention on the iCub Humanoid Robot: Instructions for Use and New Perspectives

    Get PDF
    The importance of depth perception in the interactions that humans have within their nearby space is a well established fact. Consequently, it is also well known that the possibility of exploiting good stereo information would ease and, in many cases, enable, a large variety of attentional and interactive behaviors on humanoid robotic platforms. However, the difficulty of computing real-time and robust binocular disparity maps from moving stereo cameras often prevents from relying on this kind of cue to visually guide robots' attention and actions in real-world scenarios. The contribution of this paper is two-fold: first, we show that the Efficient Large-scale Stereo Matching algorithm (ELAS) by A. Geiger et al. 2010 for computation of the disparity map is well suited to be used on a humanoid robotic platform as the iCub robot; second, we show how, provided with a fast and reliable stereo system, implementing relatively challenging visual behaviors in natural settings can require much less effort. As a case of study we consider the common situation where the robot is asked to focus the attention on one object close in the scene, showing how a simple but effective disparity-based segmentation solves the problem in this case. Indeed this example paves the way to a variety of other similar applications

    Head Tracking via Robust Registration in Texture Map Images

    Full text link
    A novel method for 3D head tracking in the presence of large head rotations and facial expression changes is described. Tracking is formulated in terms of color image registration in the texture map of a 3D surface model. Model appearance is recursively updated via image mosaicking in the texture map as the head orientation varies. The resulting dynamic texture map provides a stabilized view of the face that can be used as input to many existing 2D techniques for face recognition, facial expressions analysis, lip reading, and eye tracking. Parameters are estimated via a robust minimization procedure; this provides robustness to occlusions, wrinkles, shadows, and specular highlights. The system was tested on a variety of sequences taken with low quality, uncalibrated video cameras. Experimental results are reported
    corecore