4,499 research outputs found

    Robust Positioning in the Presence of Multipath and NLOS GNSS Signals

    Get PDF
    GNSS signals can be blocked and reflected by nearby objects, such as buildings, walls, and vehicles. They can also be reflected by the ground and by water. These effects are the dominant source of GNSS positioning errors in dense urban environments, though they can have an impact almost anywhere. Non- line-of-sight (NLOS) reception occurs when the direct path from the transmitter to the receiver is blocked and signals are received only via a reflected path. Multipath interference occurs, as the name suggests, when a signal is received via multiple paths. This can be via the direct path and one or more reflected paths, or it can be via multiple reflected paths. As their error characteristics are different, NLOS and multipath interference typically require different mitigation techniques, though some techniques are applicable to both. Antenna design and advanced receiver signal processing techniques can substantially reduce multipath errors. Unless an antenna array is used, NLOS reception has to be detected using the receiver's ranging and carrier-power-to-noise-density ratio (C/N0) measurements and mitigated within the positioning algorithm. Some NLOS mitigation techniques can also be used to combat severe multipath interference. Multipath interference, but not NLOS reception, can also be mitigated by comparing or combining code and carrier measurements, comparing ranging and C/N0 measurements from signals on different frequencies, and analyzing the time evolution of the ranging and C/N0 measurements

    Assessment of the Multipath Mitigation Effect of Vector Tracking in an Urban Environment

    Get PDF
    Today, smart mobiles play an important role in our daily life. Most of these devices are equipped with a navigation function based on GNSS positioning. However, these devices may not work accurately in urban environments due to severe multipath interference and non-line of sight (NLOS) reception caused by nearby buildings. A promising approach for reducing the effect of multipath interference and NLOS reception is vector tracking (VT). VT is well-known for its robustness against poor signal-to-noise levels. However, its capability against multipath and NLOS has yet to be determined. The new combination of this paper is therefore to evaluate the performance of vector tracking in the presence of multipath and NLOS effects. A vector delay lock loop (VDLL) is used as the vector tracking technique. The noise tuning of the extended Kalman filter (EKF) in vector tracking is a key factor affecting its performance. Therefore, developed an adaptive noise tuning algorithm had been based on the measurement innovation. In order to evaluate vector tracking’s performance, equivalent conventional tracking loops are used as a control. GNSS signals were collected, while walking around in a challenging urban environment subject to multipath interference. The experimental results show that VT generates a more stable code numerical-controlled oscillator (NCO) frequency than CT does. This characteristic could reduce the impact of multipath interference which is reflected in a smaller position error using VT during most of run. To further test capability of VT against signal attenuation, this paper applies a signal cancellation method called direct signal cancellation algorithm to simulate the scenario of signal termination and NLOS reception. According to the simulation, VT provides not only robustness against signal termination but can also detect NLOS reception without any external aiding

    Radio Frequency Interference Impact Assessment on Global Navigation Satellite Systems

    Get PDF
    The Institute for the Protection and Security of the Citizen of the EC Joint Research Centre (IPSC-JRC) has been mandated to perform a study on the Radio Frequency (RF) threat against telecommunications and ICT control systems. This study is divided into two parts. The rst part concerns the assessment of high energy radio frequency (HERF) threats, where the focus is on the generation of electromagnetic pulses (EMP), the development of corresponding devices and the possible impact on ICT and power distribution systems. The second part of the study concerns radio frequency interference (RFI) with regard to global navigation satellite systems (GNSS). This document contributes to the second part and contains a detailed literature study disclosing the weaknesses of GNSS systems. Whereas the HERF analysis only concerns intentional interference issues, this study on GNSS also takes into account unintentional interference, enlarging the spectrum of plausible interference scenarios.JRC.DG.G.6-Security technology assessmen

    Indoor Positioning Using Acoustic Pseudo-Noise Based Time Difference of Arrival

    Get PDF
    The Global Positioning System (GPS) provides good precision on a global scale, but is not suitable for indoor applications. Indoor positioning systems (IPS) aim to provide high precision position information in an indoor environment. IPS has huge market opportunity with a growing number of commercial and consumer applications especially as Internet of Things (IoT) develops. This paper studies an IPS approach using audible sound and pseudo-noise (PN) based time difference of arrival (TDoA). The system’s infrastructure consists of synchronized speakers. The object to be located, or receiver, extracts TDoA information and uses multilateration to calculate its position. The proposed IPS utilizes sound waves since they travel much slower compared to electromagnetic waves, allowing for easier measurements. Additionally, the audible spectrum has a large availability of low directivity speakers and microphones allowing for a large coverage area compared to highly directive ultrasonic transceivers. This paper experimentally evaluates the feasibility of the proposed IPS

    Multipath and interference errors reduction in gps using antenna arrays

    Get PDF
    The Global Positioning System (GPS) is a worldwide satellite based positioning system that provides any user with tridimensional position, speed and time information. The measured pseudorange is affected by the multipath propagation, which probably is the major source of errors for high precision systems. After a presentation of the GPS and the basic techniques employed to perform pseudorange measurements, the influence of the multipath components on the pseudorange measurement is explained. Like every system the GPS is also exposed to the errors that can be caused by the interferences, and a lot of civil applications need robust receivers to interferences for reasons of safety. In this paper some signal array processing techniques for reducing the code measurement errors due to the multipath propagation and the interferences are presented. Firstly, a non-adaptive beamforming is used. Secondly, a variant of the MUSIC and the maximum likelihood estimator can be used to estimate the DOA of the reflections and the interferences, and then a weight vector that removes these signals is calculated. In the third place, a beamforming with temporal reference is presented; the reference is not the GPS signal itself, but the output of a matched filter to the code. An interesting feature of the proposed techniques is that they can be applied to an array of arbitrary geometry.Peer ReviewedPostprint (published version

    Three-dimensional millimetre wave beam tracking based on handset MEMS sensors with extended Kalman filtering

    Get PDF
    Due to the narrow beam in millimetre wave communication for future 5G networks, small device movements in the form of either self-rotation or displacement can result in serious power loss. In this paper, a three-dimensional (3-D) beam tracking method employing extended Kalman filtering (EKF) is proposed based on antenna arrays and the three smart phone sensors, which are gyroscope, accelerometer and magnetometer, embedded in the micro-electro-mechanical system (MEMS) inside the smart phone. The EKF-based location tracking is also incorporated into the design by combing the data from direction of arrival (DoA) and time of arrival (ToA) estimation results of the user node (UN), since accurate UN location information is also very important in the process of beam tracking to achieve beam alignment between the access node (AN) and the UN

    Mitigating the Effects of Ionospheric Scintillation on GPS Carrier Recovery

    Get PDF
    Ionospheric scintillation is a phenomenon caused by varying concentrations of charged particles in the upper atmosphere that induces deep fades and rapid phase rotations in satellite signals, including GPS. During periods of scintillation, carrier tracking loops often lose lock on the signal because the rapid phase rotations generate cycle slips in the PLL. One solution to mitigating this problem is by employing decision-directed carrier recovery algorithms that achieve data wipe-off using differential bit detection techniques. Other techniques involve PLLs with variable bandwidth and variable integration times. Since nearly 60% of the GPS signal repeats between frames, this thesis explores PLLs utilizing variable integration times and decision-directed algorithms that exploit the repeating data as a training sequence to aid in phase error estimation. Experiments conducted using a GPS signal generator, software radio, and MATLAB scintillation testbed compare the bit error rate of each of the receiver models. Training-based methods utilizing variable integration times show significant reductions in the likelihood of total loss of lock

    Positioning Using Terrestrial Multipath Signals and Inertial Sensors

    Get PDF

    The Global Navigation System Scope (GNSScope): a toolbox for the end-to-end modelling simulation and analysis of GNSS

    Get PDF
    The thesis provides a detailed overview of the work carried out by the author over the course of the research for the award of the degree of Doctor of Philosophy at the University of Westminster, and the performance results of the novel techniques introduced into the literature. The outcome of the work is collectively referred to as the Global Navigation System Scope (GNSScope) Toolbox, offering a complete, fully reconfigurable platform for the end-to-end modeling, simulation and analysis of satellite navigation signals and systems, covering the signal acquisition, tracking, and range processing operations that take place in a generic Global Navigation Satellite System (GNSS) receiver, accompanied by a Graphical User Interface (GUI) providing access to all the techniques available in the toolbox. Designed and implemented entirely in the MATLAB mathematical programming environment using Software Defined Radio (SDR) receiver techniques, the toolbox offers a novel new acquisition algorithm capable of handling all Phase-Shift Keying (PSK) type modulations used on all frequency bands in currently available satellite navigation signals, including all sub-classes of the Binary Offset Carrier (BOC) modulated signals. In order to be able to process all these signals identified by the acquisition search, a novel tracking algorithm was also designed and implemented into the toolbox to track and decode all acquired satellite signals, including those currently intended to be used in future navigation systems, such as the Galileo test signals transmitted by the GIOVE satellites orbiting the Earth. In addition to the developed receiver toolbox, three novel algorithms were also designed to handle weak signals, multipath, and multiple access interference in GNSScope. The Mirrored Channel Mitigation Technique, based on the successive and parallel interference cancellation techniques, reduces the hardware complexity of the interference mitigation process by utilizing the local code and carrier replicas generated in the tracking channels, resulting in a reduction in hardware resources proportional to the number of received strong signals. The Trigonometric Interference Cancellation Technique, used in cross-correlation interference mitigation, exploits the underlying mathematical expressions to simplify the interference removal process, resulting in reduced complexity and execution times by reducing the number of operations by 25% per tracking channel. The Split Chip Summation Technique, based on the binary valued signal modulation compression technique, enhances the amount of information captured from compressing the signal to reveal specific filtering effects on the positive and negative polarity chips of the spreading code. Simulation case studies generated entirely using the GNSScope toolbox will be used throughout the thesis to demonstrate the effectiveness of the novel techniques developed over the course of the research, and the results will be compared to those obtained from other techniques reported in the literature
    • …
    corecore