10,640 research outputs found

    Robust 3D People Tracking and Positioning System in a Semi-Overlapped Multi-Camera Environment

    Get PDF
    People positioning and tracking in 3D indoor environments are challenging tasks due to background clutter and occlusions. Current works are focused on solving people occlusions in low-cluttered backgrounds, but fail in high-cluttered scenarios, specially when foreground objects occlude people. In this paper, a novel 3D people positioning and tracking system is presented, which shows itself robust to both possible occlusion sources: static scene objects and other people. The system holds on a set of multiple cameras with partially overlapped fields of view. Moving regions are segmented independently in each camera stream by means of a new background modeling strategy based on Gabor filters. People detection is carried out on these segmentations through a template-based correlation strategy. Detected people are tracked independently in each camera view by means of a graph-based matching strategy, which estimates the best correspondences between consecutive people segmentations. Finally, 3D tracking and positioning of people is achieved by geometrical consistency analysis over the tracked 2D candidates, using head position (instead of object centroids) to increase robustness to foreground occlusions

    3D Tracking Using Multi-view Based Particle Filters

    Get PDF
    Visual surveillance and monitoring of indoor environments using multiple cameras has become a field of great activity in computer vision. Usual 3D tracking and positioning systems rely on several independent 2D tracking modules applied over individual camera streams, fused using geometrical relationships across cameras. As 2D tracking systems suffer inherent difficulties due to point of view limitations (perceptually similar foreground and background regions causing fragmentation of moving objects, occlusions), 3D tracking based on partially erroneous 2D tracks are likely to fail when handling multiple-people interaction. To overcome this problem, this paper proposes a Bayesian framework for combining 2D low-level cues from multiple cameras directly into the 3D world through 3D Particle Filters. This method allows to estimate the probability of a certain volume being occupied by a moving object, and thus to segment and track multiple people across the monitored area. The proposed method is developed on the basis of simple, binary 2D moving region segmentation on each camera, considered as different state observations. In addition, the method is proved well suited for integrating additional 2D low-level cues to increase system robustness to occlusions: in this line, a naĂŻve color-based (HSI) appearance model has been integrated, resulting in clear performance improvements when dealing with complex scenarios

    Observation-switching linear dynamic systems for tracking humans through unexpected partial occlusions by scene objects

    Get PDF
    This paper focuses on the problem of tracking people through occlusions by scene objects. Rather than relying on models of the scene to predict when occlusions will occur as other researchers have done, this paper proposes a linear dynamic system that switches between two alternatives of the position measurement in order to handle occlusions as they occur. The filter automatically switches between a foot-based measure of position (assuming z = Q) to a head-based position measure (given the person\u27s height) when an occlusion of the person\u27s lower body occurs. No knowledge of the scene or its occluding objects is used. Unlike similar research [2, 14], the approach does not assume a fixed height for people and so is able to track humans through occlusions even when they change height during the occlusion. The approach is evaluated on three furnished scenes containing tables, chairs, desks and partitions. Occlusions range from occlusions of legs, occlusions whilst being seated and near-total occlusions where only the person\u27s head is visible. Results show that the approach provides a significant reduction in false-positive tracks in a multi-camera environment, and more than halves the number of lost tracks in single monocular camera views

    Data association and occlusion handling for vision-based people tracking by mobile robots

    Get PDF
    This paper presents an approach for tracking multiple persons on a mobile robot with a combination of colour and thermal vision sensors, using several new techniques. First, an adaptive colour model is incorporated into the measurement model of the tracker. Second, a new approach for detecting occlusions is introduced, using a machine learning classifier for pairwise comparison of persons (classifying which one is in front of the other). Third, explicit occlusion handling is incorporated into the tracker. The paper presents a comprehensive, quantitative evaluation of the whole system and its different components using several real world data sets

    Improved data association and occlusion handling for vision-based people tracking by mobile robots

    Get PDF
    This paper presents an approach for tracking multiple persons using a combination of colour and thermal vision sensors on a mobile robot. First, an adaptive colour model is incorporated into the measurement model of the tracker. Second, a new approach for detecting occlusions is introduced, using a machine learning classifier for pairwise comparison of persons (classifying which one is in front of the other). Third, explicit occlusion handling is then incorporated into the tracker

    SALSA: A Novel Dataset for Multimodal Group Behavior Analysis

    Get PDF
    Studying free-standing conversational groups (FCGs) in unstructured social settings (e.g., cocktail party ) is gratifying due to the wealth of information available at the group (mining social networks) and individual (recognizing native behavioral and personality traits) levels. However, analyzing social scenes involving FCGs is also highly challenging due to the difficulty in extracting behavioral cues such as target locations, their speaking activity and head/body pose due to crowdedness and presence of extreme occlusions. To this end, we propose SALSA, a novel dataset facilitating multimodal and Synergetic sociAL Scene Analysis, and make two main contributions to research on automated social interaction analysis: (1) SALSA records social interactions among 18 participants in a natural, indoor environment for over 60 minutes, under the poster presentation and cocktail party contexts presenting difficulties in the form of low-resolution images, lighting variations, numerous occlusions, reverberations and interfering sound sources; (2) To alleviate these problems we facilitate multimodal analysis by recording the social interplay using four static surveillance cameras and sociometric badges worn by each participant, comprising the microphone, accelerometer, bluetooth and infrared sensors. In addition to raw data, we also provide annotations concerning individuals' personality as well as their position, head, body orientation and F-formation information over the entire event duration. Through extensive experiments with state-of-the-art approaches, we show (a) the limitations of current methods and (b) how the recorded multiple cues synergetically aid automatic analysis of social interactions. SALSA is available at http://tev.fbk.eu/salsa.Comment: 14 pages, 11 figure
    • 

    corecore