24,176 research outputs found

    Integration of heterogeneous devices and communication models via the cloud in the constrained internet of things

    Get PDF
    As the Internet of Things continues to expand in the coming years, the need for services that span multiple IoT application domains will continue to increase in order to realize the efficiency gains promised by the IoT. Today, however, service developers looking to add value on top of existing IoT systems are faced with very heterogeneous devices and systems. These systems implement a wide variety of network connectivity options, protocols (proprietary or standards-based), and communication methods all of which are unknown to a service developer that is new to the IoT. Even within one IoT standard, a device typically has multiple options for communicating with others. In order to alleviate service developers from these concerns, this paper presents a cloud-based platform for integrating heterogeneous constrained IoT devices and communication models into services. Our evaluation shows that the impact of our approach on the operation of constrained devices is minimal while providing a tangible benefit in service integration of low-resource IoT devices. A proof of concept demonstrates the latter by means of a control and management dashboard for constrained devices that was implemented on top of the presented platform. The results of our work enable service developers to more easily implement and deploy services that span a wide variety of IoT application domains

    Repository Replication Using NNTP and SMTP

    Full text link
    We present the results of a feasibility study using shared, existing, network-accessible infrastructure for repository replication. We investigate how dissemination of repository contents can be ``piggybacked'' on top of existing email and Usenet traffic. Long-term persistence of the replicated repository may be achieved thanks to current policies and procedures which ensure that mail messages and news posts are retrievable for evidentiary and other legal purposes for many years after the creation date. While the preservation issues of migration and emulation are not addressed with this approach, it does provide a simple method of refreshing content with unknown partners.Comment: This revised version has 24 figures and a more detailed discussion of the experiments conducted by u

    Yellow Tree: A Distributed Main-memory Spatial Index Structure for Moving Objects

    Get PDF
    Mobile devices equipped with wireless technologies to communicate and positioning systems to locate objects of interest are common place today, providing the impetus to develop location-aware applications. At the heart of location-aware applications are moving objects or objects that continuously change location over time, such as cars in transportation networks or pedestrians or postal packages. Location-aware applications tend to support the tracking of very large numbers of such moving objects as well as many users that are interested in finding out about the locations of other moving objects. Such location-aware applications rely on support from database management systems to model, store, and query moving object data. The management of moving object data exposes the limitations of traditional (spatial) database management systems as well as their index structures designed to keep track of objects\u27 locations. Spatial index structures that have been designed for geographic objects in the past primarily assume data are foremost of static nature (e.g., land parcels, road networks, or airport locations), thus requiring a limited amount of index structure updates and reorganization over a period of time. While handling moving objects however, there is an incumbent need for continuous reorganization of spatial index structures to remain up to date with constantly and rapidly changing object locations. This research addresses some of the key issues surrounding the efficient database management of moving objects whose location update rate to the database system varies from 1 to 30 minutes. Furthermore, we address the design of a highly scaleable and efficient spatial index structure to support location tracking and querying of large amounts of moving objects. We explore the possible architectural and the data structure level changes that are required to handle large numbers of moving objects. We focus specifically on the index structures that are needed to process spatial range queries and object-based queries on constantly changing moving object data. We argue for the case of main memory spatial index structures that dynamically adapt to continuously changing moving object data and concurrently answer spatial range queries efficiently. A proof-of concept implementation called the yellow tree, which is a distributed main-memory index structure, and a simulated environment to generate moving objects is demonstrated. Using experiments conducted on simulated moving object data, we conclude that a distributed main-memory based spatial index structure is required to handle dynamic location updates and efficiently answer spatial range queries on moving objects. Future work on enhancing the query processing performance of yellow tree is also discussed
    • …
    corecore