16,670 research outputs found

    Device-free Localization using Received Signal Strength Measurements in Radio Frequency Network

    Full text link
    Device-free localization (DFL) based on the received signal strength (RSS) measurements of radio frequency (RF)links is the method using RSS variation due to the presence of the target to localize the target without attaching any device. The majority of DFL methods utilize the fact the link will experience great attenuation when obstructed. Thus that localization accuracy depends on the model which describes the relationship between RSS loss caused by obstruction and the position of the target. The existing models is too rough to explain some phenomenon observed in the experiment measurements. In this paper, we propose a new model based on diffraction theory in which the target is modeled as a cylinder instead of a point mass. The proposed model can will greatly fits the experiment measurements and well explain the cases like link crossing and walking along the link line. Because the measurement model is nonlinear, particle filtering tracing is used to recursively give the approximate Bayesian estimation of the position. The posterior Cramer-Rao lower bound (PCRLB) of proposed tracking method is also derived. The results of field experiments with 8 radio sensors and a monitored area of 3.5m 3.5m show that the tracking error of proposed model is improved by at least 36 percent in the single target case and 25 percent in the two targets case compared to other models.Comment: This paper has been withdrawn by the author due to some mistake

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs
    • …
    corecore