1,965 research outputs found

    Use of nonintrusive sensor-based information and communication technology for real-world evidence for clinical trials in dementia

    Get PDF
    Cognitive function is an important end point of treatments in dementia clinical trials. Measuring cognitive function by standardized tests, however, is biased toward highly constrained environments (such as hospitals) in selected samples. Patient-powered real-world evidence using information and communication technology devices, including environmental and wearable sensors, may help to overcome these limitations. This position paper describes current and novel information and communication technology devices and algorithms to monitor behavior and function in people with prodromal and manifest stages of dementia continuously, and discusses clinical, technological, ethical, regulatory, and user-centered requirements for collecting real-world evidence in future randomized controlled trials. Challenges of data safety, quality, and privacy and regulatory requirements need to be addressed by future smart sensor technologies. When these requirements are satisfied, these technologies will provide access to truly user relevant outcomes and broader cohorts of participants than currently sampled in clinical trials

    Recommendations for ICT use in Alzheimer's Disease assessment: Monaco CTAD expert meeting

    Get PDF
    International audienceAlzheimer disease (AD) and other related dementia represent a major challenge for health care systems within the aging population. It is therefore important to develop better instruments for assessing disease severity and disease progression to optimize patient's care and support to care provide rs, and also provide better tools for clinical research. In this area, Information and Communication Technologies (ICT) are of particular interest. Such techniques enable accurate and standardized assessments of patients' performance and actions in real time and real life situations. The aim of this article is to provide basic recommendation concerning the development and the use of ICT for Alzheimer's disease and related disorders. During he ICT and Mental Health workshop (CTAD meeting held in Monaco on the 30th October 2012) an expert panel was set up to prepare the first recommendations for the use of ICT in dementia research. The expert panel included geriatrician, epidemiologist, neurologist, psychiatrist, psychologist, ICT engineers, representatives from the industry and patient association. The recommendations are divided into three sections corresponding to 1/ the clinical targets of interest for the use of ICT, 2/ the cond itions, the type of sensors and the outputs (scores) that could be used and obtained, 3/ finally the last section concerns specifically the use of ICT within clinical trials

    Locomotion Traces Data Mining for Supporting Frail People with Cognitive Impairment

    Get PDF
    The rapid increase in the senior population is posing serious challenges to national healthcare systems. Hence, innovative tools are needed to early detect health issues, including cognitive decline. Several clinical studies show that it is possible to identify cognitive impairment based on the locomotion patterns of older people. Thus, this thesis at first focused on providing a systematic literature review of locomotion data mining systems for supporting Neuro-Degenerative Diseases (NDD) diagnosis, identifying locomotion anomaly indicators and movement patterns for discovering low-level locomotion indicators, sensor data acquisition, and processing methods, as well as NDD detection algorithms considering their pros and cons. Then, we investigated the use of sensor data and Deep Learning (DL) to recognize abnormal movement patterns in instrumented smart-homes. In order to get rid of the noise introduced by indoor constraints and activity execution, we introduced novel visual feature extraction methods for locomotion data. Our solutions rely on locomotion traces segmentation, image-based extraction of salient features from locomotion segments, and vision-based DL. Furthermore, we proposed a data augmentation strategy to increase the volume of collected data and generalize the solution to different smart-homes with different layouts. We carried out extensive experiments with a large real-world dataset acquired in a smart-home test-bed from older people, including people with cognitive diseases. Experimental comparisons show that our system outperforms state-of-the-art methods

    Information and Communication Technologies for the Activities of Daily Living in Older Patients with Dementia: A Systematic Review

    Get PDF
    Background: Significant innovations have been introduced in recent years in the application of information and communication technologies (ICTs) to support healthcare for patients with dementia. Objective: In the present systematic review, our goal is to keep track of ICT concepts and approaches to support the range of activities of daily living for people with dementia and to provide a snapshot of the effect that technology is having on patients' self-reliance. Methods: We reviewed the literature and identified systematic reviews of cohort studies and other authoritative reports. Our selection criteria included: (1) activities of daily living, (2) ICT, and (3) dementia. Results: We identified 56 studies published between 2000 and 2015, of which 26 met inclusion criteria. The present systematic review revealed many ICT systems that could purportedly support the range of activities of daily living for patients with dementia. The results showed five research bodies: 1) technologies used by patients with dementia, 2) technologies used by caregivers, 3) monitoring systems, 4) ambient assistive living with ICTs, and 5) tracking and wayfinding. Conclusions: There is a potential for ICTs to support dementia care at home and to improve quality of life for caregivers, reducing healthcare costs and premature institutional care for these patients

    An IoT-aware AAL System to Capture Behavioral Changes of Elderly People

    Get PDF
    The ageing of population is a phenomenon that is affecting the majority of developed countries around the world and will soon affect developing economies too. In recent years, both industry and academia are focused on the development of several solutions aimed to guarantee a healthy and safe lifestyle to the elderly. In this context, the behavioral analysis of elderly people can help to prevent the occurrence of Mild Cognitive Impairment (MCI) and frailty problems. The innovative technologies enabling the Internet of Things (IoT) can be used in order to capture personal data for automatically recognizing changes in elderly people behavior in an unobtrusive, low-cost and low-power modality. This work aims to describe the ongoing activities within the City4Age project, funded by the Horizon 2020 Programme of the European Commission, mainly focused on the use of IoT technologies to develop an innovative AAL system able to capture personal data of elderly people in their home and city environments. The proposed architecture has been validated through a proof-of-concept focused mainly on localization issues, collection of ambient parameters, and user-environment interaction aspects

    When technology cares for people with dementia:A critical review using neuropsychological rehabilitation as a conceptual framework

    Get PDF
    Clinicians and researchers have become increasingly interested in the potential of technology in assisting persons with dementia (PwD). However, several issues have emerged in relation to how studies have conceptualized who the main technology user is (PwD/carer), how technology is used (as compensatory, environment modification, monitoring or retraining tool), why it is used (i.e., what impairments and/or disabilities are supported) and what variables have been considered as relevant to support engagement with technology. In this review we adopted a Neuropsychological Rehabilitation perspective to analyse 253 studies reporting on technological solutions for PwD. We analysed purposes/uses, supported impairments and disabilities and how engagement was considered. Findings showed that the most frequent purposes of technology use were compensation and monitoring, supporting orientation, sequencing complex actions and memory impairments in a wide range of activities. The few studies that addressed the issue of engagement with technology considered how the ease of use, social appropriateness, level of personalization, dynamic adaptation and carers' mediation allowed technology to adapt to PWD's and carers' preferences and performance. Conceptual and methodological tools emerged as outcomes of the analytical process, representing an important contribution to understanding the role of technologies to increase PwD's wellbeing and orient future research.University of Huddersfield, under grants URF301-01 and URF506-01

    Intelligent sensing technologies for the diagnosis, monitoring and therapy of alzheimer’s disease:A systematic review

    Get PDF
    Alzheimer’s disease is a lifelong progressive neurological disorder. It is associated with high disease management and caregiver costs. Intelligent sensing systems have the capability to provide context-aware adaptive feedback. These can assist Alzheimer’s patients with, continuous monitoring, functional support and timely therapeutic interventions for whom these are of paramount importance. This review aims to present a summary of such systems reported in the extant literature for the management of Alzheimer’s disease. Four databases were searched, and 253 English language articles were identified published between the years 2015 to 2020. Through a series of filtering mechanisms, 20 articles were found suitable to be included in this review. This study gives an overview of the depth and breadth of the efficacy as well as the limitations of these intelligent systems proposed for Alzheimer’s. Results indicate two broad categories of intelligent technologies, distributed systems and self-contained devices. Distributed systems base their outcomes mostly on long-term monitoring activity patterns of individuals whereas handheld devices give quick assessments through touch, vision and voice. The review concludes by discussing the potential of these intelligent technologies for clinical practice while highlighting future considerations for improvements in the design of these solutions for Alzheimer’s disease

    HealthXAI: Collaborative and explainable AI for supporting early diagnosis of cognitive decline

    Get PDF
    Our aging society claims for innovative tools to early detect symptoms of cognitive decline. Several research efforts are being made to exploit sensorized smart-homes and artificial intelligence (AI) methods to detect a decline of the cognitive functions of the elderly in order to promptly alert practitioners. Even though those tools may provide accurate predictions, they currently provide limited support to clinicians in making a diagnosis. Indeed, most AI systems do not provide any explanation of the reason why a given prediction was computed. Other systems are based on a set of rules that are easy to interpret by a human. However, those rule-based systems can cope with a limited number of abnormal situations, and are not flexible enough to adapt to different users and contextual situations. In this paper, we tackle this challenging problem by proposing a flexible AI system to recognize early symptoms of cognitive decline in smart-homes, which is able to explain the reason of predictions at a fine-grained level. Our method relies on well known clinical indicators that consider subtle and overt behavioral anomalies, as well as spatial disorientation and wandering behaviors. In order to adapt to different individuals and situations, anomalies are recognized using a collaborative approach. We experimented our approach with a large set of real world subjects, including people with MCI and people with dementia. We also implemented a dashboard to allow clinicians to inspect anomalies together with the explanations of predictions. Results show that our system's predictions are significantly correlated to the person's actual diagnosis. Moreover, a preliminary user study with clinicians suggests that the explanation capabilities of our system are useful to improve the task performance and to increase trust. To the best of our knowledge, this is the first work that explores data-driven explainable AI for supporting the diagnosis of cognitive decline

    Emerging roles for telemedicine and smart technologies in dementia care

    Get PDF
    corecore