3,070 research outputs found

    Overview of contextual tracking approaches in information fusion

    Get PDF
    Proceedings of: Geospatial InfoFusion III. 2-3 May 2013 Baltimore, Maryland, United States.Many information fusion solutions work well in the intended scenarios; but the applications, supporting data, and capabilities change over varying contexts. One example is weather data for electro-optical target trackers of which standards have evolved over decades. The operating conditions of: technology changes, sensor/target variations, and the contextual environment can inhibit performance if not included in the initial systems design. In this paper, we seek to define and categorize different types of contextual information. We describe five contextual information categories that support target tracking: (1) domain knowledge from a user to aid the information fusion process through selection, cueing, and analysis, (2) environment-to-hardware processing for sensor management, (3) known distribution of entities for situation/threat assessment, (4) historical traffic behavior for situation awareness patterns of life (POL), and (5) road information for target tracking and identification. Appropriate characterization and representation of contextual information is needed for future high-level information fusion systems design to take advantage of the large data content available for a priori knowledge target tracking algorithm construction, implementation, and application.Publicad

    Trajectory generation for lane-change maneuver of autonomous vehicles

    Get PDF
    Lane-change maneuver is one of the most thoroughly investigated automatic driving operations that can be used by an autonomous self-driving vehicle as a primitive for performing more complex operations like merging, entering/exiting highways or overtaking another vehicle. This thesis focuses on two coherent problems that are associated with the trajectory generation for lane-change maneuvers of autonomous vehicles in a highway scenario: (i) an effective velocity estimation of neighboring vehicles under different road scenarios involving linear and curvilinear motion of the vehicles, and (ii) trajectory generation based on the estimated velocities of neighboring vehicles for safe operation of self-driving cars during lane-change maneuvers. ^ We first propose a two-stage, interactive-multiple-model-based estimator to perform multi-target tracking of neighboring vehicles in a lane-changing scenario. The first stage deals with an adaptive window based turn-rate estimation for tracking maneuvering target vehicles using Kalman filter. In the second stage, variable-structure models with updated estimated turn-rate are utilized to perform data association followed by velocity estimation. Based on the estimated velocities of neighboring vehicles, piecewise Bezier-curve-based methods that minimize the safety/collision risk involved and maximize the comfort ride have been developed for the generation of desired trajectory for lane-change maneuvers. The proposed velocity-estimation and trajectory-generation algorithms have been validated experimentally using Pioneer3- DX mobile robots in a simulated lane-change environment as well as validated by computer simulations

    Multi Sensor Multi Target Perception and Tracking for Informed Decisions in Public Road Scenarios

    Get PDF
    Multi-target tracking in public traffic calls for a tracking system with automated track initiation and termination facilities in a randomly evolving driving environment. Besides, the key problem of data association needs to be handled effectively considering the limitations in the computational resources on-board an autonomous car. The challenge of the tracking problem is further evident in the use of high-resolution automotive sensors which return multiple detections per object. Furthermore, it is customary to use multiple sensors that cover different and/or over-lapping Field of View and fuse sensor detections to provide robust and reliable tracking. As a consequence, in high-resolution multi-sensor settings, the data association uncertainty, and the corresponding tracking complexity increases pointing to a systematic approach to handle and process sensor detections. In this work, we present a multi-target tracking system that addresses target birth/initiation and death/termination processes with automatic track management features. These tracking functionalities can help facilitate perception during common events in public traffic as participants (suddenly) change lanes, navigate intersections, overtake and/or brake in emergencies, etc. Various tracking approaches including the ones based on joint integrated probability data association (JIPDA) filter, Linear Multi-target Integrated Probabilistic Data Association (LMIPDA) Filter, and their multi-detection variants are adapted to specifically include algorithms that handle track initiation and termination, clutter density estimation and track management. The utility of the filtering module is further elaborated by integrating it into a trajectory tracking problem based on model predictive control. To cope with tracking complexity in the case of multiple high-resolution sensors, we propose a hybrid scheme that combines the approaches of data clustering at the local sensor and multiple detections tracking schemes at the fusion layer. We implement a track-to-track fusion scheme that de-correlates local (sensor) tracks to avoid double counting and apply a measurement partitioning scheme to re-purpose the LMIPDA tracking algorithm to multi-detection cases. In addition to the measurement partitioning approach, a joint extent and kinematic state estimation scheme are integrated into the LMIPDA approach to facilitate perception and tracking of an individual as well as group targets as applied to multi-lane public traffic. We formulate the tracking problem as a two hierarchical layer. This arrangement enhances the multi-target tracking performance in situations including but not limited to target initialization(birth process), target occlusion, missed detections, unresolved measurement, target maneuver, etc. Also, target groups expose complex individual target interactions to help in situation assessment which is challenging to capture otherwise. The simulation studies are complemented by experimental studies performed on single and multiple (group) targets. Target detections are collected from a high-resolution radar at a frequency of 20Hz; whereas RTK-GPS data is made available as ground truth for one of the target vehicle\u27s trajectory

    Computer simulation of a pilot in V/STOL aircraft control loops

    Get PDF
    The objective was to develop a computerized adaptive pilot model for the computer model of the research aircraft, the Harrier II AV-8B V/STOL with special emphasis on propulsion control. In fact, two versions of the adaptive pilot are given. The first, simply called the Adaptive Control Model (ACM) of a pilot includes a parameter estimation algorithm for the parameters of the aircraft and an adaption scheme based on the root locus of the poles of the pilot controlled aircraft. The second, called the Optimal Control Model of the pilot (OCM), includes an adaption algorithm and an optimal control algorithm. These computer simulations were developed as a part of the ongoing research program in pilot model simulation supported by NASA Lewis from April 1, 1985 to August 30, 1986 under NASA Grant NAG 3-606 and from September 1, 1986 through November 30, 1988 under NASA Grant NAG 3-729. Once installed, these pilot models permitted the computer simulation of the pilot model to close all of the control loops normally closed by a pilot actually manipulating the control variables. The current version of this has permitted a baseline comparison of various qualitative and quantitative performance indices for propulsion control, the control loops and the work load on the pilot. Actual data for an aircraft flown by a human pilot furnished by NASA was compared to the outputs furnished by the computerized pilot and found to be favorable

    NASA Automated Rendezvous and Capture Review. A compilation of the abstracts

    Get PDF
    This document presents a compilation of abstracts of papers solicited for presentation at the NASA Automated Rendezvous and Capture Review held in Williamsburg, VA on November 19-21, 1991. Due to limitations on time and other considerations, not all abstracts could be presented during the review. The organizing committee determined however, that all abstracts merited availability to all participants and represented data and information reflecting state-of-the-art of this technology which should be captured in one document for future use and reference. The organizing committee appreciates the interest shown in the review and the response by the authors in submitting these abstracts

    Context Exploitation in Data Fusion

    Get PDF
    Complex and dynamic environments constitute a challenge for existing tracking algorithms. For this reason, modern solutions are trying to utilize any available information which could help to constrain, improve or explain the measurements. So called Context Information (CI) is understood as information that surrounds an element of interest, whose knowledge may help understanding the (estimated) situation and also in reacting to that situation. However, context discovery and exploitation are still largely unexplored research topics. Until now, the context has been extensively exploited as a parameter in system and measurement models which led to the development of numerous approaches for the linear or non-linear constrained estimation and target tracking. More specifically, the spatial or static context is the most common source of the ambient information, i.e. features, utilized for recursive enhancement of the state variables either in the prediction or the measurement update of the filters. In the case of multiple model estimators, context can not only be related to the state but also to a certain mode of the filter. Common practice for multiple model scenarios is to represent states and context as a joint distribution of Gaussian mixtures. These approaches are commonly referred as the join tracking and classification. Alternatively, the usefulness of context was also demonstrated in aiding the measurement data association. Process of formulating a hypothesis, which assigns a particular measurement to the track, is traditionally governed by the empirical knowledge of the noise characteristics of sensors and operating environment, i.e. probability of detection, false alarm, clutter noise, which can be further enhanced by conditioning on context. We believe that interactions between the environment and the object could be classified into actions, activities and intents, and formed into structured graphs with contextual links translated into arcs. By learning the environment model we will be able to make prediction on the target\u2019s future actions based on its past observation. Probability of target future action could be utilized in the fusion process to adjust tracker confidence on measurements. By incorporating contextual knowledge of the environment, in the form of a likelihood function, in the filter measurement update step, we have been able to reduce uncertainties of the tracking solution and improve the consistency of the track. The promising results demonstrate that the fusion of CI brings a significant performance improvement in comparison to the regular tracking approaches

    Vehicle Tracking and Motion Estimation Based on Stereo Vision Sequences

    Get PDF
    In this dissertation, a novel approach for estimating trajectories of road vehicles such as cars, vans, or motorbikes, based on stereo image sequences is presented. Moving objects are detected and reliably tracked in real-time from within a moving car. The resulting information on the pose and motion state of other moving objects with respect to the own vehicle is an essential basis for future driver assistance and safety systems, e.g., for collision prediction. The focus of this contribution is on oncoming traffic, while most existing work in the literature addresses tracking the lead vehicle. The overall approach is generic and scalable to a variety of traffic scenes including inner city, country road, and highway scenarios. A considerable part of this thesis addresses oncoming traffic at urban intersections. The parameters to be estimated include the 3D position and orientation of an object relative to the ego-vehicle, as well as the object's shape, dimension, velocity, acceleration and the rotational velocity (yaw rate). The key idea is to derive these parameters from a set of tracked 3D points on the object's surface, which are registered to a time-consistent object coordinate system, by means of an extended Kalman filter. Combining the rigid 3D point cloud model with the dynamic model of a vehicle is one main contribution of this thesis. Vehicle tracking at intersections requires covering a wide range of different object dynamics, since vehicles can turn quickly. Three different approaches for tracking objects during highly dynamic turn maneuvers up to extreme maneuvers such as skidding are presented and compared. These approaches allow for an online adaptation of the filter parameter values, overcoming manual parameter tuning depending on the dynamics of the tracked object in the scene. This is the second main contribution. Further issues include the introduction of two initialization methods, a robust outlier handling, a probabilistic approach for assigning new points to a tracked object, as well as mid-level fusion of the vision-based approach with a radar sensor. The overall system is systematically evaluated both on simulated and real-world data. The experimental results show the proposed system is able to accurately estimate the object pose and motion parameters in a variety of challenging situations, including night scenes, quick turn maneuvers, and partial occlusions. The limits of the system are also carefully investigated.In dieser Dissertation wird ein Ansatz zur Trajektorienschätzung von Straßenfahrzeugen (PKW, Lieferwagen, Motorräder,...) anhand von Stereo-Bildfolgen vorgestellt. Bewegte Objekte werden in Echtzeit aus einem fahrenden Auto heraus automatisch detektiert, vermessen und deren Bewegungszustand relativ zum eigenen Fahrzeug zuverlässig bestimmt. Die gewonnenen Informationen liefern einen entscheidenden Grundstein für zukünftige Fahrerassistenz- und Sicherheitssysteme im Automobilbereich, beispielsweise zur Kollisionsprädiktion. Während der Großteil der existierenden Literatur das Detektieren und Verfolgen vorausfahrender Fahrzeuge in Autobahnszenarien adressiert, setzt diese Arbeit einen Schwerpunkt auf den Gegenverkehr, speziell an städtischen Kreuzungen. Der Ansatz ist jedoch grundsätzlich generisch und skalierbar für eine Vielzahl an Verkehrssituationen (Innenstadt, Landstraße, Autobahn). Die zu schätzenden Parameter beinhalten die räumliche Lage des anderen Fahrzeugs relativ zum eigenen Fahrzeug, die Objekt-Geschwindigkeit und -Längsbeschleunigung, sowie die Rotationsgeschwindigkeit (Gierrate) des beobachteten Objektes. Zusätzlich werden die Objektabmaße sowie die Objektform rekonstruiert. Die Grundidee ist es, diese Parameter anhand der Transformation von beobachteten 3D Punkten, welche eine ortsfeste Position auf der Objektoberfläche besitzen, mittels eines rekursiven Schätzers (Kalman Filter) zu bestimmen. Ein wesentlicher Beitrag dieser Arbeit liegt in der Kombination des Starrkörpermodells der Punktewolke mit einem Fahrzeugbewegungsmodell. An Kreuzungen können sehr unterschiedliche Dynamiken auftreten, von einer Geradeausfahrt mit konstanter Geschwindigkeit bis hin zum raschen Abbiegen. Um eine manuelle Parameteradaption abhängig von der jeweiligen Szene zu vermeiden, werden drei verschiedene Ansätze zur automatisierten Anpassung der Filterparameter an die vorliegende Situation vorgestellt und verglichen. Dies stellt den zweiten Hauptbeitrag der Arbeit dar. Weitere wichtige Beiträge sind zwei alternative Initialisierungsmethoden, eine robuste Ausreißerbehandlung, ein probabilistischer Ansatz zur Zuordnung neuer Objektpunkte, sowie die Fusion des bildbasierten Verfahrens mit einem Radar-Sensor. Das Gesamtsystem wird im Rahmen dieser Arbeit systematisch anhand von simulierten und realen Straßenverkehrsszenen evaluiert. Die Ergebnisse zeigen, dass das vorgestellte Verfahren in der Lage ist, die unbekannten Objektparameter auch unter schwierigen Umgebungsbedingungen, beispielsweise bei Nacht, schnellen Abbiegemanövern oder unter Teilverdeckungen, sehr präzise zu schätzen. Die Grenzen des Systems werden ebenfalls sorgfältig untersucht

    Stochastic Real-time Optimal Control for Bearing-only Trajectory Planning

    Get PDF
    A method is presented to simultaneously solve the optimal control problem and the optimal estimation problem for a bearing-only sensor. For bearing-only systems that require a minimum level of certainty in position relative to a source for mission accomplishment, some amount of maneuver is required to measure range. Traditional methods of trajectory optimization and optimal estimation minimize an information metric. This paper proposes constraining the final value of the information states with known time propagation dynamics relative to a given trajectory which allows for attainment of the required level of information with minimal deviation from a general performance index that can be tailored to a specific vehicle. The proposed method does not suffer from compression of the information metric into a scalar, and provides a route that will attain a particular target estimate quality while maneuvering to a desired relative point or set. An algorithm is created to apply the method in real-time, iteratively estimating target position with an Unscented Kalman Filter and updating the trajectory with an efficient pseudospectral method. Methods and tools required for hardware implementation are presented that apply to any real-time optimal control (RTOC) system. The algorithm is validated with both simulation and flight test, autonomously landing a quadrotor on a wire
    corecore