107 research outputs found

    A Generalized Framework on Beamformer Design and CSI Acquisition for Single-Carrier Massive MIMO Systems in Millimeter Wave Channels

    Get PDF
    In this paper, we establish a general framework on the reduced dimensional channel state information (CSI) estimation and pre-beamformer design for frequency-selective massive multiple-input multiple-output MIMO systems employing single-carrier (SC) modulation in time division duplex (TDD) mode by exploiting the joint angle-delay domain channel sparsity in millimeter (mm) wave frequencies. First, based on a generic subspace projection taking the joint angle-delay power profile and user-grouping into account, the reduced rank minimum mean square error (RR-MMSE) instantaneous CSI estimator is derived for spatially correlated wideband MIMO channels. Second, the statistical pre-beamformer design is considered for frequency-selective SC massive MIMO channels. We examine the dimension reduction problem and subspace (beamspace) construction on which the RR-MMSE estimation can be realized as accurately as possible. Finally, a spatio-temporal domain correlator type reduced rank channel estimator, as an approximation of the RR-MMSE estimate, is obtained by carrying out least square (LS) estimation in a proper reduced dimensional beamspace. It is observed that the proposed techniques show remarkable robustness to the pilot interference (or contamination) with a significant reduction in pilot overhead

    Improving the Performance of R17 Type-II Codebook with Deep Learning

    Full text link
    The Type-II codebook in Release 17 (R17) exploits the angular-delay-domain partial reciprocity between uplink and downlink channels to select part of angular-delay-domain ports for measuring and feeding back the downlink channel state information (CSI), where the performance of existing deep learning enhanced CSI feedback methods is limited due to the deficiency of sparse structures. To address this issue, we propose two new perspectives of adopting deep learning to improve the R17 Type-II codebook. Firstly, considering the low signal-to-noise ratio of uplink channels, deep learning is utilized to accurately select the dominant angular-delay-domain ports, where the focal loss is harnessed to solve the class imbalance problem. Secondly, we propose to adopt deep learning to reconstruct the downlink CSI based on the feedback of the R17 Type-II codebook at the base station, where the information of sparse structures can be effectively leveraged. Besides, a weighted shortcut module is designed to facilitate the accurate reconstruction. Simulation results demonstrate that our proposed methods could improve the sum rate performance compared with its traditional R17 Type-II codebook and deep learning benchmarks.Comment: Accepted by IEEE GLOBECOM 2023, conference version of Arxiv:2305.0808
    • …
    corecore