593 research outputs found

    Echocardiography

    Get PDF
    The book "Echocardiography - New Techniques" brings worldwide contributions from highly acclaimed clinical and imaging science investigators, and representatives from academic medical centers. Each chapter is designed and written to be accessible to those with a basic knowledge of echocardiography. Additionally, the chapters are meant to be stimulating and educational to the experts and investigators in the field of echocardiography. This book is aimed primarily at cardiology fellows on their basic echocardiography rotation, fellows in general internal medicine, radiology and emergency medicine, and experts in the arena of echocardiography. Over the last few decades, the rate of technological advancements has developed dramatically, resulting in new techniques and improved echocardiographic imaging. The authors of this book focused on presenting the most advanced techniques useful in today's research and in daily clinical practice. These advanced techniques are utilized in the detection of different cardiac pathologies in patients, in contributing to their clinical decision, as well as follow-up and outcome predictions. In addition to the advanced techniques covered, this book expounds upon several special pathologies with respect to the functions of echocardiography

    Post-processing approaches for the improvement of cardiac ultrasound B-mode images:a review

    Get PDF

    Left Ventricular Border Tracking Using Cardiac Motion Models and Optical Flow

    Get PDF
    The use of automated methods is becoming increasingly important for assessing cardiac function quantitatively and objectively. In this study, we propose a method for tracking three-dimensional (3-D) left ventricular contours. The method consists of a local optical flow tracker and a global tracker, which uses a statistical model of cardiac motion in an optical-flow formulation. We propose a combination of local and global trackers using gradient-based weights. The algorithm was tested on 35 echocardiographic sequences, with good results (surface error: 1.35 ± 0.46 mm, absolute volume error: 5.4 ± 4.8 mL). This demonstrates the method’s potential in automated tracking in clinical quality echocardiograms, facilitating the quantitative and objective assessment of cardiac functio

    3D cine DENSE MRI: ventricular segmentation and myocardial stratin analysis

    Get PDF
    Includes abstract. Includes bibliographical references

    LV Volume Quantification via Spatiotemporal Analysis of Real-Time 3-D Echocardiography

    Get PDF
    This paper presents a method of four-dimensional (4-D) (3-D+Time) space-frequency analysis for directional denoising and enhancement of real-time three-dimensional (RT3D) ultrasound and quantitative measures in diagnostic cardiac ultrasound. Expansion of echocardiographic volumes is performed with complex exponential wavelet-like basis functions called brushlets. These functions offer good localization in time and frequency and decompose a signal into distinct patterns of oriented harmonics, which are invariant to intensity and contrast range. Deformable-model segmentation is carried out on denoised data after thresholding of transform coefficients. This process attenuates speckle noise while preserving cardiac structure location. The superiority of 4-D over 3-D analysis for decorrelating additive white noise and multiplicative speckle noise on a 4-D phantom volume expanding in time is demonstrated. Quantitative validation, computed for contours and volumes, is performed on in vitro balloon phantoms. Clinical applications of this spatiotemporal analysis tool are reported for six patient cases providing measures of left ventricular volumes and ejection fraction

    Computational Methods for Segmentation of Multi-Modal Multi-Dimensional Cardiac Images

    Get PDF
    Segmentation of the heart structures helps compute the cardiac contractile function quantified via the systolic and diastolic volumes, ejection fraction, and myocardial mass, representing a reliable diagnostic value. Similarly, quantification of the myocardial mechanics throughout the cardiac cycle, analysis of the activation patterns in the heart via electrocardiography (ECG) signals, serve as good cardiac diagnosis indicators. Furthermore, high quality anatomical models of the heart can be used in planning and guidance of minimally invasive interventions under the assistance of image guidance. The most crucial step for the above mentioned applications is to segment the ventricles and myocardium from the acquired cardiac image data. Although the manual delineation of the heart structures is deemed as the gold-standard approach, it requires significant time and effort, and is highly susceptible to inter- and intra-observer variability. These limitations suggest a need for fast, robust, and accurate semi- or fully-automatic segmentation algorithms. However, the complex motion and anatomy of the heart, indistinct borders due to blood flow, the presence of trabeculations, intensity inhomogeneity, and various other imaging artifacts, makes the segmentation task challenging. In this work, we present and evaluate segmentation algorithms for multi-modal, multi-dimensional cardiac image datasets. Firstly, we segment the left ventricle (LV) blood-pool from a tri-plane 2D+time trans-esophageal (TEE) ultrasound acquisition using local phase based filtering and graph-cut technique, propagate the segmentation throughout the cardiac cycle using non-rigid registration-based motion extraction, and reconstruct the 3D LV geometry. Secondly, we segment the LV blood-pool and myocardium from an open-source 4D cardiac cine Magnetic Resonance Imaging (MRI) dataset by incorporating average atlas based shape constraint into the graph-cut framework and iterative segmentation refinement. The developed fast and robust framework is further extended to perform right ventricle (RV) blood-pool segmentation from a different open-source 4D cardiac cine MRI dataset. Next, we employ convolutional neural network based multi-task learning framework to segment the myocardium and regress its area, simultaneously, and show that segmentation based computation of the myocardial area is significantly better than that regressed directly from the network, while also being more interpretable. Finally, we impose a weak shape constraint via multi-task learning framework in a fully convolutional network and show improved segmentation performance for LV, RV and myocardium across healthy and pathological cases, as well as, in the challenging apical and basal slices in two open-source 4D cardiac cine MRI datasets. We demonstrate the accuracy and robustness of the proposed segmentation methods by comparing the obtained results against the provided gold-standard manual segmentations, as well as with other competing segmentation methods

    Towards automating cine DENSE MRI image analysis : segmentation, tissue tracking and strain computation

    Get PDF
    Includes bibliographical references (p. 192-206).Over the past two decades, magnetic resonance imaging (MRI) has developed into a powerful imaging tool for the heart. Imaging cardiac morphology is now commonplace in clinical practice, and a plethora of quantitative techniques have also arisen on the research front. Myocardial tagging is an established quantitative cardiac MRI method that involves magnetically tagging the heart with a set of saturated bands, and monitoring the deformation of these bands as the heart contracts

    State of the Art of Level Set Methods in Segmentation and Registration of Medical Imaging Modalities

    Get PDF
    Segmentation of medical images is an important step in various applications such as visualization, quantitative analysis and image-guided surgery. Numerous segmentation methods have been developed in the past two decades for extraction of organ contours on medical images. Low-level segmentation methods, such as pixel-based clustering, region growing, and filter-based edge detection, require additional pre-processing and post-processing as well as considerable amounts of expert intervention or information of the objects of interest. Furthermore the subsequent analysis of segmented objects is hampered by the primitive, pixel or voxel level representations from those region-based segmentation. Deformable models, on the other hand, provide an explicit representation of the boundary and the shape of the object. They combine several desirable features such as inherent connectivity and smoothness, which counteract noise and boundary irregularities, as well as the ability to incorporate knowledge about the object of interest. However, parametric deformable models have two main limitations. First, in situations where the initial model and desired object boundary differ greatly in size and shape, the model must be re-parameterized dynamically to faithfully recover the object boundary. The second limitation is that it has difficulty dealing with topological adaptation such as splitting or merging model parts, a useful property for recovering either multiple objects or objects with unknown topology. This difficulty is caused by the fact that a new parameterization must be constructed whenever topology change occurs, which requires sophisticated schemes. Level set deformable models, also referred to as geometric deformable models, provide an elegant solution to address the primary limitations of parametric deformable models. These methods have drawn a great deal of attention since their introduction in 1988. Advantages of the contour implicit formulation of the deformable model over parametric formulation include: (1) no parameterization of the contour, (2) topological flexibility, (3) good numerical stability, (4) straightforward extension of the 2D formulation to n-D. Recent reviews on the subject include papers from Suri. In this chapter we give a general overview of the level set segmentation methods with emphasize on new frameworks recently introduced in the context of medical imaging problems. We then introduce novel approaches that aim at combining segmentation and registration in a level set formulation. Finally we review a selective set of clinical works with detailed validation of the level set methods for several clinical applications
    • 

    corecore