664 research outputs found

    Inferring Mood-While-Eating with Smartphone Sensing and Community-Based Model Personalization

    Full text link
    The interplay between mood and eating has been the subject of extensive research within the fields of nutrition and behavioral science, indicating a strong connection between the two. Further, phone sensor data have been used to characterize both eating behavior and mood, independently, in the context of mobile food diaries and mobile health applications. However, limitations within the current body of literature include: i) the lack of investigation around the generalization of mood inference models trained with passive sensor data from a range of everyday life situations, to specific contexts such as eating, ii) no prior studies that use sensor data to study the intersection of mood and eating, and iii) the inadequate examination of model personalization techniques within limited label settings, as we commonly experience in mood inference. In this study, we sought to examine everyday eating behavior and mood using two datasets of college students in Mexico (N_mex = 84, 1843 mood-while-eating reports) and eight countries (N_mul = 678, 329K mood reports incl. 24K mood-while-eating reports), containing both passive smartphone sensing and self-report data. Our results indicate that generic mood inference models decline in performance in certain contexts, such as when eating. Additionally, we found that population-level (non-personalized) and hybrid (partially personalized) modeling techniques were inadequate for the commonly used three-class mood inference task (positive, neutral, negative). Furthermore, we found that user-level modeling was challenging for the majority of participants due to a lack of sufficient labels and data from the negative class. To address these limitations, we employed a novel community-based approach for personalization by building models with data from a set of similar users to a target user

    Analyzing Behavioral Adaptation to COVID-19 And Return To Pre-Pandemic Baselines in a Cohort of College Seniors

    Get PDF
    As the critical phase of the COVID-19 pandemic seems to be winding down, it is important to analyze the adjustment to COVID-19 and return to normalcy of various populations. In this study we focus on the behavioral adjustments exhibited by a cohort of N=114 college seniors. To infer COVID-19 adjustment we compare the 2021 year (second year of COVID-19) to the 2020 year (first year of COVID-19) and 2019 (prepandemic baseline year). We begin with a broad analysis between the second and first covid year, finding that the second year of COVID-19 shows significant returns to pre-pandemic baselines on multiple sensing features. Further, we run statistical comparisons between the terms of Fall 2020 (lockdown fall), Fall 2019 (pre-covid fall) and Fall 2021 (postlockdown fall) and note statistically significant differences between Fall 2021 and Fall 2019 on four variables of interest. We find that activity variables surpass their pre-pandemic baseline, while smartphone usage variables still lag in their return. This suggests that disruptions to physical activity are easier to correct for, whereas smartphone and technology use display more permanent shifts once disrupted. We then use a multivariate forecasting method trained on Fall 2019 to forecast the entirety of Fall 2021, yielding an average Mean Absolure Relative Range Error of 12.15 indicating similarity between the terms. Finally, we perform a clustering analysis to understand whether there are any differences in how students react to the omicron and delta waves of COVID-19. One of our clusterings returns a cluster of students with a delayed return to baseline, while the other returns a few outlier students that exhibit dramatic shifts in behavior around the time the Omicron variant appears

    Mood ratings and digital biomarkers from smartphone and wearable data differentiates and predicts depression status : A longitudinal data analysis

    Get PDF
    Depression is a prevalent mental disorder. Current clinical and self-reported assessment methods of depression are laborious and incur recall bias. Their sporadic nature often misses severity fluctuations. Previous research highlights the potential of in-situ quantification of human behaviour using mobile sensors to augment traditional methods of depression management. In this paper, we study whether self-reported mood scores and passive smartphone and wearable sensor data could be used to classify people as depressed or non-depressed. In a longitudinal study, our participants provided daily mood (valence and arousal) scores and collected data using their smartphones and Oura Rings. We computed daily aggregations of mood, sleep, physical activity, phone usage, and GPS mobility from raw data to study the differences between the depressed and non-depressed groups and created population-level Machine Learning classification models of depression. We found statistically significant differences in GPS mobility, phone usage, sleep, physical activity and mood between depressed and non-depressed groups. An XGBoost model with daily aggregations of mood and sensor data as predictors classified participants with an accuracy of 81.43% and an Area Under the Curve of 82.31%. A Support Vector Machine using only sensor-based predictors had an accuracy of 77.06% and an Area Under the Curve of 74.25%. Our results suggest that digital biomarkers are promising in differentiating people with and without depression symptoms. This study contributes to the body of evidence supporting the role of unobtrusive mobile sensor data in understanding depression and its potential to augment depression diagnosis and monitoring. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CCPeer reviewe

    Predicting Depression From Smartphone Behavioral Markers Using Machine Learning Methods, Hyperparameter Optimization, and Feature Importance Analysis : Exploratory Study

    Get PDF
    Background: Depression is a prevalent mental health challenge. Current depression assessment methods using self-reported and clinician-administered questionnaires have limitations. Instrumenting smartphones to passively and continuously collect moment-by-moment data sets to quantify human behaviors has the potential to augment current depression assessment methods for early diagnosis, scalable, and longitudinal monitoring of depression. Objective: The objective of this study was to investigate the feasibility of predicting depression with human behaviors quantified from smartphone data sets, and to identify behaviors that can influence depression. Methods: Smartphone data sets and self-reported 8-item Patient Health Questionnaire (PHQ-8) depression assessments were collected from 629 participants in an exploratory longitudinal study over an average of 22.1 days (SD 17.90; range 8-86). We quantified 22 regularity, entropy, and SD behavioral markers from the smartphone data. We explored the relationship between the behavioral features and depression using correlation and bivariate linear mixed models (LMMs). We leveraged 5 supervised machine learning (ML) algorithms with hyperparameter optimization, nested cross-validation, and imbalanced data handling to predict depression. Finally, with the permutation importance method, we identified influential behavioral markers in predicting depression. Results: Of the 629 participants from at least 56 countries, 69 (10.97%) were females, 546 (86.8%) were males, and 14 (2.2%) were nonbinary. Participants' age distribution is as follows: 73/629 (11.6%) were aged between 18 and 24, 204/629 (32.4%) were aged between 25 and 34, 156/629 (24.8%) were aged between 35 and 44, 166/629 (26.4%) were aged between 45 and 64, and 30/629 (4.8%) were aged 65 years and over. Of the 1374 PHQ-8 assessments, 1143 (83.19%) responses were nondepressed scores (PHQ-8 score = 10), as identified based on PHQ-8 cut-off. A significant positive Pearson correlation was found between screen status-normalized entropy and depression (r=0.14, P Conclusions: Our findings demonstrate that behavioral markers indicative of depression can be unobtrusively identified from smartphone sensors' data. Traditional assessment of depression can be augmented with behavioral markers from smartphones for depression diagnosis and monitoring.Peer reviewe
    • …
    corecore