1,789 research outputs found

    An Adaptive Controller Design for Flexible-joint Electrically-driven Robots With Consideration of Time-Varying Uncertainties

    Get PDF
    Almost all present control strategies for electrically-driven robots are under the rigid robot assumption. Few results can be found for the control of electrically driven robots with joint flexibility. This is because the presence of the joint flexibility greatly increases the complexity of the system dynamics. What is worse is when some system dynamics are not available and a good performance controller is required. In this paper, an adaptive design is proposed to this challenging problem. A backstepping-like procedure incorporating the model reference adaptive control is employed to circumvent the difficulty introduced by its cascade structure and various uncertainties. A Lyapunov-like analysis is used to justify the closed-loop stability and boundedness of internal signals. Moreover, the upper bounds of tracking errors in the transient state are also derived. Computer simulation results are presented to demonstrate the usefulness of the proposed scheme. Keywords: Adaptive control; Flexible-joint electrically-driven robot; FAT 2. Introduction Control of rigid robots has been well understood in recent years, but most of the schemes ignore the dynamics coming from electric motors and harmonic drivers that are widely implemented in the industrial robots. However, actuator dynamics constitute an important part of the complete robot dynamics, especially in the cases of high-velocity movement and highly varying loads[1],[2]. The main reason for using a reduced model is to simplify complexity of controller design. For each joint, consideration of the flexibility from the M. C. Chien was with the Department of Mechanical Engineering, National Taiwan University of Science and Technology. He is now with the Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, No. 195, Sec. 4, Chung-Hsing Rd., Chutung, Hsinchu, 310, Taiwan, R.O.C. (e-mail: [email protected]). 2 A. C. Huang is with the Department of Mechanical Engineering, National Taiwan University of Science and Technology. No. 43, Keelung Rd., Sec. 4, Taipei, Taiwan, ROC. (Tel:+886-2-27376490, Fax: +886-2-37376460, E-mail: [email protected]). (A. C. Huang provides phone number because he is the corresponding author.

    A Model-Free Approach for Accurate Joint Motion Control in Humanoid Locomotion

    Get PDF
    A new model-free approach to precisely control humanoid robot joints is presented in this article. An input&-output online identification procedure will permit to compensate neglected or uncertain dynamics, such as, on the one hand, transmission and compliance nonlinear effects, and, on the other hand, network transmission delays. Robustness toparameter variations will be analyzed and compared to other advanced PID-based controllers. Simulations will show that not only good tracking quality can be obtained with this novel technique, but also that it provides a very robust behavior to the closed-loop system. Furthermore, a locomotion task will be tested in a complete humanoid simulatorto highlight the suitability of this control approach for such complex systems.This work has been supported by the CAM Project S2009/DPI-1559/ROBOCITY2030 II, developed by the research team RoboticsLab at the University Carlos III of Madrid.Publicad

    Development of a micromanipulation system with force sensing

    Get PDF
    This article provides in-depth knowledge about our undergoing effort to develop an open architecture micromanipulation system with force sensing capabilities. The major requirement to perform any micromanipulation task effectively is to ensure the controlled motion of actuators within nanometer accuracy with low overshoot even under the influence of disturbances. Moreover, to achieve high dexterity in manipulation, control of the interaction forces is required. In micromanipulation, control of interaction forces necessitates force sensing in milli-Newton range with nano-Newton resolution. In this paper, we present a position controller based on a discrete time sliding mode control architecture along with a disturbance observer. Experimental verifications for this controller are demonstrated for 100, 50 and 10 nanometer step inputs applied to PZT stages. Our results indicate that position tracking accuracies up to 10 nanometers, without any overshoot and low steady state error are achievable. Furthermore, the paper includes experimental verification of force sensing within nano-Newton resolution using a piezoresistive cantilever endeffector. Experimental results are compared to the theoretical estimates of the change in attractive forces as a function of decreasing distance and of the pull off force between a silicon tip and a glass surface, respectively. Good agreement among the experimental data and the theoretical estimates has been demonstrated

    Decentralized adaptive partitioned approximation control of high degrees-of-freedom robotic manipulators considering three actuator control modes

    Get PDF
    International audiencePartitioned approximation control is avoided in most decentralized control algorithms; however, it is essential to design a feedforward control term for improving the tracking accuracy of the desired references. In addition, consideration of actuator dynamics is important for a robot with high-velocity movement and highly varying loads. As a result, this work is focused on decentralized adaptive partitioned approximation control for complex robotic systems using the orthogonal basis functions as strong approximators. In essence, the partitioned approximation technique is intrinsically decentralized with some modifications. Three actuator control modes are considered in this study: (i) a torque control mode in which the armature current is well controlled by a current servo amplifier and the motor torque/current constant is known, (ii) a current control mode in which the torque/current constant is unknown, and (iii) a voltage control mode with no current servo control being available. The proposed decentralized control law consists of three terms: the partitioned approximation-based feedforward term that is necessary for precise tracking, the high gain-based feedback term, and the adaptive sliding gain-based term for compensation of modeling error. The passivity property is essential to prove the stability of local stability of the individual subsystem with guaranteed global stability. Two case studies are used to prove the validity of the proposed controller: a two-link manipulator and a six-link biped robot

    Control Of Rigid Robots With Large Uncertainties Using The Function Approximation Technique

    Get PDF
    This dissertation focuses on the control of rigid robots that cannot easily be modeled due to complexity and large uncertainties. The function approximation technique (FAT), which represents uncertainties as finite linear combinations of orthonormal basis functions, provides an alternate form of robot control - in situations where the dynamic equation cannot easily be modeled - with no dependency on the use of model information or training data. This dissertation has four aims - using the FAT - to improve controller efficiency and robustness in scenarios where reliable mathematical models cannot easily be derived or are otherwise unavailable. The first aim is to analyze the uncertain combination of a test robot and prosthesis in a scenario where the test robot and prosthesis are adequately controlled by different controllers - this is tied to efficiency. We develop a hybrid FAT controller, theoretically prove stability, and verify its performance using computer simulations. We show that systematically combining controllers can improve controller analysis and yield desired performance. In the second aim addressed in this dissertation, we investigate the simplification of the adaptive FAT controller complexity for ease of implementation - this is tied to efficiency. We achieve this by applying the passivity property and prove controller stability. We conduct computer simulations on a rigid robot under good and poor initial conditions to demonstrate the effectiveness of the controller. For an n degrees of freedom (DOFs) robot, we see a reduction of controller tuning parameters by 2n. The third aim addressed in this dissertation is the extension of the adaptive FAT controller to the robust control framework - this is tied to robustness. We invent a novel robust controller based on the FAT that uses continuous switching laws and eliminates the dependency on update laws. The controller, when compared against three state-of-the-art controllers via computer simulations and experimental tests on a rigid robot, shows good performance and robustness to fast time-varying uncertainties and random parameter perturbations. This introduces the first purely robust FAT-based controller. The fourth and final aim addressed in this dissertation is the development of a more compact form of the robust FAT controller developed in aim~3 - this is tied to efficiency and robustness. We investigate the simplification of the control structure and its applicability to a broader class of systems that can be modeled via the state-space approach. Computer simulations and experimental tests on a rigid robot demonstrate good controller performance and robustness to fast time-varying uncertainties and random parameter perturbations when compared to the robust FAT controller developed in aim 3. For an n-DOF robot, we see a reduction in the number of switching laws from 3 to 1

    Adaptive RBF network control for robot manipulators

    Get PDF
    TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed network includes a hidden layer with one node, two inputs and a single output. In comparison with other model-free estimators such as multilayer neural networks and fuzzy systems, the proposed estimator is simpler, less computational and more effective. The weights of the RBF network are tuned online using an adaptation law derived by stability analysis. Despite the majority of previous control approaches which are the torque-based control, the proposed control design is the voltage-based control. Simulations and comparisons with a robust neural network control approach show the efficiency of the proposed control approach applied on the articulated robot manipulator driven by permanent magnet DC motors

    Vibration observation for a translational flexible-link manipulator based on improved Luenberger observer

    Get PDF
    The residual vibration is a very universal problem in flexible manipulators which are widely used in robot technology. This paper focuses on the soft measurement of the vibration signals for a translational flexible-link manipulator (TFLM) system. A vibration observer based on the improved Luenberger observer, which only requires the practical measurement values of the boundary positions, is designed to obtain the vibration signals of the TFLM. The main contribution of the vibration observer is its ability to simplify system structure and get the vibration signals of any point of the TFLM which is unrealistic by infinite sensors in practice. Furthermore, the improved part of the Luenberger observer is the added feedback coefficients for the tip vibration signals which can correct the observed mode and reduce the observation error markedly. And according to the stable conditions of observer, the added feedback coefficients are designed by Lyapunov technique and multiple population genetic algorithms (MPGA). Finally, the efficiency of the designed vibration observer is verified by combined-simulation
    corecore