6,347 research outputs found

    Odors: from chemical structures to gaseous plumes

    Get PDF
    We are immersed within an odorous sea of chemical currents that we parse into individual odors with complex structures. Odors have been posited as determined by the structural relation between the molecules that compose the chemical compounds and their interactions with the receptor site. But, naturally occurring smells are parsed from gaseous odor plumes. To give a comprehensive account of the nature of odors the chemosciences must account for these large distributed entities as well. We offer a focused review of what is known about the perception of odor plumes for olfactory navigation and tracking, which we then connect to what is known about the role odorants play as properties of the plume in determining odor identity with respect to odor quality. We end by motivating our central claim that more research needs to be conducted on the role that odorants play within the odor plume in determining odor identity

    Sensing array for coherence analysis of modulated aquatic chemical plumes

    Get PDF
    An electrochemical sensor array can provide information about the spatial and temporal distribution of chemicals in liquid turbulent plumes. Planar laser induced fluorescence (PLIF) and amperometric sensor arrays were used to record signals from modulated chemical plumes released into a recirculating aquatic flume. Coherence analysis was applied to extract the frequency components contained in the sensor response. Effects due to release distance, modulation frequency, and array orientation were investigated. This study has demonstrated that frequency encoded information can be extracted from a turbulent chemical plume using an array of amperometric sensors with optimized three-dimensional geometry and tuning.M.S.Committee Chair: Janata, Jiri; Committee Member: Lyon, Andrew; Committee Member: Weissburg, Mar

    Towards Odor-Sensitive Mobile Robots

    Get PDF
    J. Monroy, J. Gonzalez-Jimenez, "Towards Odor-Sensitive Mobile Robots", Electronic Nose Technologies and Advances in Machine Olfaction, IGI Global, pp. 244--263, 2018, doi:10.4018/978-1-5225-3862-2.ch012 VersiĂłn preprint, con permiso del editorOut of all the components of a mobile robot, its sensorial system is undoubtedly among the most critical ones when operating in real environments. Until now, these sensorial systems mostly relied on range sensors (laser scanner, sonar, active triangulation) and cameras. While electronic noses have barely been employed, they can provide a complementary sensory information, vital for some applications, as with humans. This chapter analyzes the motivation of providing a robot with gas-sensing capabilities and also reviews some of the hurdles that are preventing smell from achieving the importance of other sensing modalities in robotics. The achievements made so far are reviewed to illustrate the current status on the three main fields within robotics olfaction: the classification of volatile substances, the spatial estimation of the gas dispersion from sparse measurements, and the localization of the gas source within a known environment

    Chemical event tracking using a low-cost wireless chemical sensing network

    Get PDF
    A recently developed low-cost light emitting diode (LED) chemical sensing technique is integrated with a Mica2Dot wireless communications platform to form a deployable wireless chemical event indicator network. The operation of the colorimetric sensing node has been evaluated to determine its reproducibility and limit of detection for an acidic airborne contaminant. A test-scale network of five similar chemical sensing nodes is deployed in a star communication topology at fixed points within a custom built Environmental Sensing Chamber (ESC). Presented data sets collected from the deployed wireless chemical sensor network (WCSN) show that during an acidic event scenario it is possible to track the plume speed and direction, and estimate the concentration of chemical plume by examining the collective sensor data relative to individual sensor node location within the monitored environment

    Automatic reaction to a chemical event detected by a low-cost wireless chemical sensing network

    Get PDF
    A test-scale wireless chemical sensor network (WCSN) has been deployed within a controlled Environmental Chamber (EC). The combined signals from the WCSN were used to initiate a controllable response to the detected chemical event. When a particular sensor response pattern was obtained, a purging cycle was initiated. Sensor data were continuously checked against user-defined action limits, to determine if a chemical event had occurred. An acidic contaminant was used to demonstrate the response of the sensor network. Once the acid plume was simultaneously detected by a number of wireless chemical sensor nodes, an automatic response action, which was the purging of the EC with clean air, was initiated and maintained for a period of time until the WCSN indicated that normal status had been re-established
    • 

    corecore