741 research outputs found

    Globally-Coordinated Locally-Linear Modeling of Multi-Dimensional Data

    Get PDF
    This thesis considers the problem of modeling and analysis of continuous, locally-linear, multi-dimensional spatio-temporal data. Our work extends the previously reported theoretical work on the global coordination model to temporal analysis of continuous, multi-dimensional data. We have developed algorithms for time-varying data analysis and used them in full-scale, real-world applications. The applications demonstrated in this thesis include tracking, synthesis, recognitions and retrieval of dynamic objects based on their shape, appearance and motion. The proposed approach in this thesis has advantages over existing approaches to analyzing complex spatio-temporal data. Experiments show that the new modeling features of our approach improve the performance of existing approaches in many applications. In object tracking, our approach is the first one to track nonlinear appearance variations by using low-dimensional representation of the appearance change in globally-coordinated linear subspaces. In dynamic texture synthesis, we are able to model non-stationary dynamic textures, which cannot be handled by any of the existing approaches. In human motion synthesis, we show that realistic synthesis can be performed without using specific transition points, or key frames

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Learning Generative Models for Multi-Activity Body Pose Estimation

    Get PDF
    We present a method to simultaneously estimate 3D body pose and action categories from monocular video sequences. Our approach learns a generative model of the relationship of body pose and image appearance using a sparse kernel regressor. Body poses are modelled on a low-dimensional manifold obtained by Locally Linear Embedding dimensionality reduction. In addition, we learn a prior model of likely body poses and a dynamical model in this pose manifold. Sparse kernel regressors capture the nonlinearities of this mapping efficiently. Within a Recursive Bayesian Sampling framework, the potentially multimodal posterior probability distributions can then be inferred. An activity-switching mechanism based on learned transfer functions allows for inference of the performed activity class, along with the estimation of body pose and 2D image location of the subject. Using a rough foreground segmentation, we compare Binary PCA and distance transforms to encode the appearance. As a postprocessing step, the globally optimal trajectory through the entire sequence is estimated, yielding a single pose estimate per frame that is consistent throughout the sequence. We evaluate the algorithm on challenging sequences with subjects that are alternating between running and walking movements. Our experiments show how the dynamical model helps to track through poorly segmented low-resolution image sequences where tracking otherwise fails, while at the same time reliably classifying the activity typ

    MOVIN: Real-time Motion Capture using a Single LiDAR

    Full text link
    Recent advancements in technology have brought forth new forms of interactive applications, such as the social metaverse, where end users interact with each other through their virtual avatars. In such applications, precise full-body tracking is essential for an immersive experience and a sense of embodiment with the virtual avatar. However, current motion capture systems are not easily accessible to end users due to their high cost, the requirement for special skills to operate them, or the discomfort associated with wearable devices. In this paper, we present MOVIN, the data-driven generative method for real-time motion capture with global tracking, using a single LiDAR sensor. Our autoregressive conditional variational autoencoder (CVAE) model learns the distribution of pose variations conditioned on the given 3D point cloud from LiDAR.As a central factor for high-accuracy motion capture, we propose a novel feature encoder to learn the correlation between the historical 3D point cloud data and global, local pose features, resulting in effective learning of the pose prior. Global pose features include root translation, rotation, and foot contacts, while local features comprise joint positions and rotations. Subsequently, a pose generator takes into account the sampled latent variable along with the features from the previous frame to generate a plausible current pose. Our framework accurately predicts the performer's 3D global information and local joint details while effectively considering temporally coherent movements across frames. We demonstrate the effectiveness of our architecture through quantitative and qualitative evaluations, comparing it against state-of-the-art methods. Additionally, we implement a real-time application to showcase our method in real-world scenarios. MOVIN dataset is available at \url{https://movin3d.github.io/movin_pg2023/}

    Aerospace Medicine and Biology. A continuing bibliography with indexes

    Get PDF
    This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981. Aerospace medicine and aerobiology topics are included. Listings for physiological factors, astronaut performance, control theory, artificial intelligence, and cybernetics are included

    Human Pose Estimation from Monocular Images : a Comprehensive Survey

    Get PDF
    Human pose estimation refers to the estimation of the location of body parts and how they are connected in an image. Human pose estimation from monocular images has wide applications (e.g., image indexing). Several surveys on human pose estimation can be found in the literature, but they focus on a certain category; for example, model-based approaches or human motion analysis, etc. As far as we know, an overall review of this problem domain has yet to be provided. Furthermore, recent advancements based on deep learning have brought novel algorithms for this problem. In this paper, a comprehensive survey of human pose estimation from monocular images is carried out including milestone works and recent advancements. Based on one standard pipeline for the solution of computer vision problems, this survey splits the problema into several modules: feature extraction and description, human body models, and modelin methods. Problem modeling methods are approached based on two means of categorization in this survey. One way to categorize includes top-down and bottom-up methods, and another way includes generative and discriminative methods. Considering the fact that one direct application of human pose estimation is to provide initialization for automatic video surveillance, there are additional sections for motion-related methods in all modules: motion features, motion models, and motion-based methods. Finally, the paper also collects 26 publicly available data sets for validation and provides error measurement methods that are frequently used

    Linearized Motion Estimation for Articulated Planes

    Full text link
    corecore