10,308 research outputs found

    Application of probabilistic PCR5 Fusion Rule for Multisensor Target Tracking

    Full text link
    This paper defines and implements a non-Bayesian fusion rule for combining densities of probabilities estimated by local (non-linear) filters for tracking a moving target by passive sensors. This rule is the restriction to a strict probabilistic paradigm of the recent and efficient Proportional Conflict Redistribution rule no 5 (PCR5) developed in the DSmT framework for fusing basic belief assignments. A sampling method for probabilistic PCR5 (p-PCR5) is defined. It is shown that p-PCR5 is more robust to an erroneous modeling and allows to keep the modes of local densities and preserve as much as possible the whole information inherent to each densities to combine. In particular, p-PCR5 is able of maintaining multiple hypotheses/modes after fusion, when the hypotheses are too distant in regards to their deviations. This new p-PCR5 rule has been tested on a simple example of distributed non-linear filtering application to show the interest of such approach for future developments. The non-linear distributed filter is implemented through a basic particles filtering technique. The results obtained in our simulations show the ability of this p-PCR5-based filter to track the target even when the models are not well consistent in regards to the initialization and real cinematic

    Quantum sensing with arbitrary frequency resolution

    Full text link
    Quantum sensing takes advantage of well controlled quantum systems for performing measurements with high sensitivity and precision. We have implemented a concept for quantum sensing with arbitrary frequency resolution, independent of the qubit probe and limited only by the stability of an external synchronization clock. Our concept makes use of quantum lock-in detection to continuously probe a signal of interest. Using the electronic spin of a single nitrogen vacancy center in diamond, we demonstrate detection of oscillating magnetic fields with a frequency resolution of 70 uHz over a MHz bandwidth. The continuous sampling further guarantees an excellent sensitivity, reaching a signal-to-noise ratio in excess of 10,000:1 for a 170 nT test signal measured during a one-hour interval. Our technique has applications in magnetic resonance spectroscopy, quantum simulation, and sensitive signal detection.Comment: Manuscript resubmitted to Science. Includes Supplementary Material
    • …
    corecore