79 research outputs found

    Analysis of Respiratory Sounds: State of the Art

    Get PDF
    Objective This paper describes state of the art, scientific publications and ongoing research related to the methods of analysis of respiratory sounds. Methods and material Review of the current medical and technological literature using Pubmed and personal experience. Results The study includes a description of the various techniques that are being used to collect auscultation sounds, a physical description of known pathologic sounds for which automatic detection tools were developed. Modern tools are based on artificial intelligence and on technics such as artificial neural networks, fuzzy systems, and genetic algorithms… Conclusion The next step will consist in finding new markers so as to increase the efficiency of decision aid algorithms and tools

    Snoring and arousals in full-night polysomnographic studies from sleep apnea-hypopnea syndrome patients

    Get PDF
    SAHS (Sleep Apnea-Hypopnea Syndrome) is recognized to be a serious disorder with high prevalence in the population. The main clinical triad for SAHS is made up of 3 symptoms: apneas and hypopneas, chronic snoring and excessive daytime sleepiness (EDS). The gold standard for diagnosing SAHS is an overnight polysomnographic study performed at the hospital, a laborious, expensive and time-consuming procedure in which multiple biosignals are recorded. In this thesis we offer improvements to the current approaches to diagnosis and assessment of patients with SAHS. We demonstrate that snoring and arousals, while recognized key markers of SAHS, should be fully appreciated as essential tools for SAHS diagnosis. With respect to snoring analysis (applied to a 34 subjects¿ database with a total of 74439 snores), as an alternative to acoustic analysis, we have used less complex approaches mostly based on time domain parameters. We concluded that key information on SAHS severity can be extracted from the analysis of the time interval between successive snores. For that, we built a new methodology which consists on applying an adaptive threshold to the whole night sequence of time intervals between successive snores. This threshold enables to identify regular and non-regular snores. Finally, we were able to correlate the variability of time interval between successive snores in short 15 minute segments and throughout the whole night with the subject¿s SAHS severity. Severe SAHS subjects show a shorter time interval between regular snores (p=0.0036, AHI cp(cut-point): 30h-1) and less dispersion on the time interval features during all sleep. Conversely, lower intra-segment variability (p=0.006, AHI cp: 30h-1) is seen for less severe SAHS subjects. Also, we have shown successful in classifying the subjects according to their SAHS severity using the features derived from the time interval between regular snores. Classification accuracy values of 88.2% (with 90% sensitivity, 75% specificity) and 94.1% (with 94.4% sensitivity, 93.8% specificity) for AHI cut-points of severity of 5 and 30h-1, respectively. In what concerns the arousal study, our work is focused on respiratory and spontaneous arousals (45 subjects with a total of 2018 respiratory and 2001 spontaneous arousals). Current beliefs suggest that the former are the main cause for sleep fragmentation. Accordingly, sleep clinicians assign an important role to respiratory arousals when providing a final diagnosis on SAHS. Provided that the two types of arousals are triggered by different mechanisms we hypothesized that there might exist differences between their EEG content. After characterizing our arousal database through spectral analysis, results showed that the content of respiratory arousals on a mild SAHS subject is similar to that of a severe one (p>>0.05). Similar results were obtained for spontaneous arousals. Our findings also revealed that no differences are observed between the features of these two kinds of arousals on a same subject (r=0.8, p<0.01 and concordance with Bland-Altman analysis). As a result, we verified that each subject has almost like a fingerprint or signature for his arousals¿ content and is similar for both types of arousals. In addition, this signature has no correlation with SAHS severity and this is confirmed for the three EEG tracings (C3A2, C4A1 and O1A2). Although the trigger mechanisms of the two arousals are known to be different, our results showed that the brain response is fairly the same for both of them. The impact that respiratory arousals have in the sleep of SAHS patients is unquestionable but our findings suggest that the impact of spontaneous arousals should not be underestimated

    All night analysis of time interval between snores in subjects with sleep apnea hypopnea syndrome

    Get PDF
    Sleep apnea–hypopnea syndrome (SAHS) is a serious sleep disorder, and snoring is one of its earliest and most consistent symptoms. We propose a new methodology for identifying two distinct types of snores: the so-called non-regular and regular snores. Respiratory sound signals from 34 subjects with different ranges of Apnea-Hypopnea Index (AHI = 3.7–109.9 h−1) were acquired. A total number of 74,439 snores were examined. The time interval between regular snores in short segments of the all night recordings was analyzed. Severe SAHS subjects show a shorter time interval between regular snores (p = 0.0036, AHI cp: 30 h−1) and less dispersion on the time interval features during all sleep. Conversely, lower intra-segment variability (p = 0.006, AHI cp: 30 h−1) is seen for less severe SAHS subjects. Features derived from the analysis of time interval between regular snores achieved classification accuracies of 88.2 % (with 90 % sensitivity, 75 % specificity) and 94.1 % (with 94.4 % sensitivity, 93.8 % specificity) for AHI cut-points of severity of 5 and 30 h−1, respectively. The features proved to be reliable predictors of the subjects’ SAHS severity. Our proposed method, the analysis of time interval between snores, provides promising results and puts forward a valuable aid for the early screening of subjects suspected of having SAHS

    Measurement and analysis of breath sounds

    Get PDF
    Existing breath sound measurement systems and possible new methods have been critically investigated. The frequency response of each part of the measurement system has been studied. Emphasis has been placed on frequency response of acoustic sensors; especially, a method to study a diaphragm type air-coupler in contact use has been proposed. Two new methods of breath sounds measurement have been studied: laser Doppler vibrometer and mobile phones. It has been shown that these two methods can find applications in breath sounds measurement, however there are some restrictions. A reliable automatic wheeze detection algorithm based on auditory modelling has been developed. That is the human’s auditory system is modelled as a bank of band pass filters, in which the bandwidths are frequency dependent. Wheezes are treated as signals additive to normal breath sounds (masker). Thus wheeze is detectable when it is above the masking threshold. This new algorithm has been validated using simulated and real data. It is superior to previous algorithms, being more reliable to detect wheezes and less prone to mistakes. Simulation of cardiorespiratory sounds and wheeze audibility tests have been developed. Simulated breath sounds can be used as a training tool, as well as an evaluation method. These simulations have shown that, under certain circumstance, there are wheezes but they are inaudible. It is postulated that this could also happen in real measurements. It has been shown that simulated sounds with predefined characteristics can be used as an objective method to evaluate automatic algorithms. Finally, the efficiency and necessity of heart sounds reduction procedures has been investigated. Based on wavelet decomposition and selective synthesis, heart sounds can be reduced with a cost of unnatural breath sounds. Heart sound reduction is shown not to be necessary if a time-frequency representation is used, as heart sounds have a fixed pattern in the time-frequency plane

    A software toolkit for acoustic respiratory analysis

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Includes bibliographical references (p. 143-147).Millions of Americans suffer from pulmonary diseases. According to recent statistics, approximately 17 million people suffer from asthma, 16.4 million from chronic obstructive pulmonary disease, 12 million from sleep apnea, and 1.3 million from pneumonia - not to mention the prevalence of many other diseases associated with the lungs. Annually, the mortality attributed to pulmonary diseases exceeds 150,000. Clinical signs of most pulmonary diseases include irregular breathing patterns, the presence of abnormal breath sounds such as wheezes and crackles, and the absence of breathing entirely. Throughout the history of medicine, physicians have always listened for such sounds at the chest wall (or over the trachea) during patient examinations to diagnose pulmonary diseases - a procedure also known as auscultation. Recent advancements in computer technology have made it possible to record, store, and digitally process breath sounds for further analysis. Although automated techniques for lung sound analysis have not been widely employed in the medical field, there has been a growing interest among researchers to use technology to understand the subtler characteristics of lung sounds and their potential correlations with physiological conditions. Based on such correlations, algorithms and tools can be developed to serve as diagnostic aids in both the clinical and non-clinical settings.(cont.) We developed a software toolkit, using MATLAB, to objectively characterize lung sounds. The toolkit includes a respiration detector, respiratory rate detector, respiratory phase onset detector, respiratory phase classifier, crackle and wheeze detectors and characterizers, and a time-scale signal expander. This document provides background on lung sounds, describes and evaluates our analysis techniques, and compares our work to approaches in other diagnostic tools.by Gina Ann Yi.M.Eng

    Characterization and processing of novel neck photoplethysmography signals for cardiorespiratory monitoring

    Get PDF
    Epilepsy is a neurological disorder causing serious brain seizures that severely affect the patients' quality of life. Sudden unexpected death in epilepsy (SUDEP), for which no evident decease reason is found after post-mortem examination, is a common cause of mortality. The mechanisms leading to SUDEP are uncertain, but, centrally mediated apneic respiratory dysfunction, inducing dangerous hypoxemia, plays a key role. Continuous physiological monitoring appears as the only reliable solution for SUDEP prevention. However, current seizure-detection systems do not show enough sensitivity and present a high number of intolerable false alarms. A wearable system capable of measuring several physiological signals from the same body location, could efficiently overcome these limitations. In this framework, a neck wearable apnea detection device (WADD), sensing airflow through tracheal sounds, was designed. Despite the promising performance, it is still necessary to integrate an oximeter sensor into the system, to measure oxygen saturation in blood (SpO2) from neck photoplethysmography (PPG) signals, and hence, support the apnea detection decision. The neck is a novel PPG measurement site that has not yet been thoroughly explored, due to numerous challenges. This research work aims to characterize neck PPG signals, in order to fully exploit this alternative pulse oximetry location, for precise cardiorespiratory biomarkers monitoring. In this thesis, neck PPG signals were recorded, for the first time in literature, in a series of experiments under different artifacts and respiratory conditions. Morphological and spectral characteristics were analyzed in order to identify potential singularities of the signals. The most common neck PPG artifacts critically corrupting the signal quality, and other breathing states of interest, were thoroughly characterized in terms of the most discriminative features. An algorithm was further developed to differentiate artifacts from clean PPG signals. Both, the proposed characterization and classification model can be useful tools for researchers to denoise neck PPG signals and exploit them in a variety of clinical contexts. In addition to that, it was demonstrated that the neck also offered the possibility, unlike other body parts, to extract the Jugular Venous Pulse (JVP) non-invasively. Overall, the thesis showed how the neck could be an optimum location for multi-modal monitoring in the context of diseases affecting respiration, since it not only allows the sensing of airflow related signals, but also, the breathing frequency component of the PPG appeared more prominent than in the standard finger location. In this context, this property enabled the extraction of relevant features to develop a promising algorithm for apnea detection in near-real time. These findings could be of great importance for SUDEP prevention, facilitating the investigation of the mechanisms and risk factors associated to it, and ultimately reduce epilepsy mortality.Open Acces

    High-Performance Accelerometer Based On Asymmetric Gapped Cantilevers For Physiological Acoustic Sensing

    Get PDF
    Continuous or mobile monitoring of physiological sounds is expected to play important role in the emerging mobile healthcare field. Because of the miniature size, low cost, and easy installation, accelerometer is an excellent choice for continuous physiological acoustic signal monitoring. However, in order to capture the detailed information in the physiological signals for clinical diagnostic purpose, there are more demanding requirements on the sensitivity/noise performance of accelerometers. In this thesis, a unique piezoelectric accelerometer based on the asymmetric gapped cantilever which exhibits significantly improved sensitivity is extensively studied. A meso-scale prototype is developed for capturing the high quality cardio and respiratory sounds on healthy people as well as on heart failure patients. A cascaded gapped cantilever based accelerometer is also explored for low frequency vibration sensing applications such as ballistocardiogram monitoring. Finally, to address the power issues of wireless sensors such as wireless wearable health monitors, a wide band vibration energy harvester based on a folded gapped cantilever is developed and demonstrated on a ceiling air condition unit

    Anesthetic-induced unresponsiveness: Electroencephalographic correlates and subjective experiences

    Get PDF
    Anesthetic drugs can induce reversible alterations in responsiveness, connectedness and consciousness. The measures based on electroencephalogram (EEG) have marked potential for monitoring the anesthetized state because of their relatively easy use in the operating room. In this study, 79 healthy young men participated in an awake experiment, and 47 participants continued to an anesthesia experiment where they received either dexmedetomidine or propofol as target-controlled infusion with stepwise increments until the loss of responsiveness. The participants were roused during the constant drug infusion and interviewed. The drug dose was increased to 1.5-fold to achieve a deeper unresponsive state. After regaining responsiveness, the participants were interviewed. EEG was measured throughout the experiment and the N400 event-related potential component and functional and directed connectivity were studied. Prefrontal-frontal connectivity in the alpha frequency band discriminated the states that differed with respect to responsiveness or drug concentration. The net direction of connectivity was frontal-to-prefrontal during unresponsiveness and reversed back to prefrontal-to-frontal upon return of responsiveness. The understanding of the meaning of spoken language, as measured with the N400 effect, was lost along with responsiveness but, in the dexmedetomidine group, the N400 component was preserved suggesting partial preservation of the processing of words during anesthetic-induced unresponsiveness. However, the N400 effect could not be detected in all the awake participants and the choice of analysis method had marked impact on its detection rate at the individual-level. Subjective experiences were common during unresponsiveness induced by dexmedetomidine and propofol but the experiences most often suggested disconnectedness from the environment. In conclusion, the doses of dexmedetomidine or propofol minimally sufficient to induce unresponsiveness do not render the participants unconscious and dexmedetomidine does not completely abolish the processing of semantic stimuli. The local anterior EEG connectivity in the alpha frequency band may have potential in monitoring the depth of dexmedetomidine- and propofol-induced anesthesia.Anesteettien aiheuttama vastauskyvyttömyys: aivosähkökäyräpohjaiset korrelaatit ja subjektiiviset kokemukset Anestesialääkkeillä voidaan saada aikaan palautuvia muutoksia vastauskykyisyydessä, kytkeytyneisyydessä ja tajunnassa. Aivosähkökäyrään (EEG) pohjautuvat menetelmät tarjoavat lupaavia mahdollisuuksia mitata anestesian vaikutusta aivoissa, sillä niitä on suhteellisen helppo käyttää leikkaussalissa. Tässä tutkimuksessa 79 tervettä nuorta miestä osallistui valvekokeeseen ja 47 heistä jatkoi anestesiakokeeseen. Anestesiakokeessa koehenkilöille annettiin joko deksmedetomidiinia tai propofolia tavoiteohjattuna infuusiona nousevia annosportaita käyttäen, kunnes he menettivät vastauskykynsä. Koehenkilöt herätettiin tasaisen lääkeinfuusion aikana ja haastateltiin. Koko kokeen ajan mitattiin EEG:tä, josta tutkittiin N400-herätevastetta sekä toiminnallista ja suunnattua konnektiivisuutta. Prefrontaali-frontaalivälillä mitattu konnektiivisuus alfa-taajuuskaistassa erotteli toisistaan tilat, jotka erosivat vastauskykyisyyden tai lääkepitoisuuden suhteen. Konnektiivisuuden vallitseva suunta oli frontaalialueilta prefrontaalialueille vastauskyvyttömyyden aikana, mutta se kääntyi takaisin prefrontaalisesta frontaaliseen kulkevaksi koehenkilöiden vastauskyvyn palatessa. N400-efektillä mitattu puhutun kielen ymmärtäminen katosi vastauskyvyn menettämisen myötä. Deksmedetomidiiniryhmässä N400-komponentti säilyi, mikä viittaa siihen, että anesteettien aiheuttaman vastauskyvyttömyyden aikana sanojen prosessointi voi säilyä osittain. Yksilötasolla N400-efektiä ei kuitenkaan havaittu edes kaikilla hereillä olevilla henkilöillä, ja analyysimenetelmän valinnalla oli suuri vaikutus herätevasteen havaitsemiseen. Subjektiiviset kokemukset olivat yleisiä deksmedetomidiinin ja propofolin aiheuttaman vastauskyvyttömyyden aikana, mutta kokemukset olivat usein ympäristöstä irtikytkeytyneitä. Yhteenvetona voidaan todeta, että deksmedetomidiini- ja propofoliannokset, jotka juuri ja juuri riittävät aikaansaamaan vastauskyvyttömyyden, eivät aiheuta tajuttomuutta. Deksmedetomidiini ei myöskään täysin estä merkityssisällöllisten ärsykkeiden käsittelyä. Frontaalialueen sisällä EEG:llä mitattu konnektiivisuus alfataajuuskaistassa saattaa olla tulevaisuudessa hyödyllinen menetelmä deksmedetomidiini- ja propofolianestesian syvyyden mittaamiseksi

    Electrocardiogram-derived tidal volume during treadmill stress test

    Get PDF
    Objective: Electrocardiogram (ECG) has been regarded as a source of respiratory information with the main focus in the estimation of the respiratory rate. Although little research concerning the estimation of tidal volume (TV) has been conducted, there are several ECG-derived features that have been related with TV in the literature, such as ECG-derived respiration, heart rate variability or respiratory rate. In this work, we exploited these features for estimating TV using a linear model. Methods: 25 young (33.4 ± 5.2 years) healthy male volunteers were recruited for performing a maximal (MaxT) and a submaximal (SubT) treadmill stress test, which were conducted in different days. Both tests were automatically segmented in stages attending to the heart rate. Afterwards, a subject-specific TV model was calibrated for each stage, employing features from MaxT, and the model was later used for estimating the TV in SubT. Results: During exercise, the different proposed approaches led to relative fitting errors lower than 14% in most of the cases and than 6% in some of them. Conclusion: Low achieved fitting errors suggest that TV can be estimated from ECG during a treadmill stress test. Significance: The results suggest that it is possible to estimate TV during exercise using only ECG-derived features

    Recent development of respiratory rate measurement technologies

    Get PDF
    Respiratory rate (RR) is an important physiological parameter whose abnormity has been regarded as an important indicator of serious illness. In order to make RR monitoring simple to do, reliable and accurate, many different methods have been proposed for such automatic monitoring. According to the theory of respiratory rate extraction, methods are categorized into three modalities: extracting RR from other physiological signals, RR measurement based on respiratory movements, and RR measurement based on airflow. The merits and limitations of each method are highlighted and discussed. In addition, current works are summarized to suggest key directions for the development of future RR monitoring methodologies
    corecore