5 research outputs found

    Almost Symmetries and the Unit Commitment Problem

    Get PDF
    This thesis explores two main topics. The first is almost symmetry detection on graphs. The presence of symmetry in combinatorial optimization problems has long been considered an anathema, but in the past decade considerable progress has been made. Modern integer and constraint programming solvers have automatic symmetry detection built-in to either exploit or avoid symmetric regions of the search space. Automatic symmetry detection generally works by converting the input problem to a graph which is in exact correspondence with the problem formulation. Symmetry can then be detected on this graph using one of the excellent existing algorithms; these are also the symmetries of the problem formulation.The motivation for detecting almost symmetries on graphs is that almost symmetries in an integer program can force the solver to explore nearly symmetric regions of the search space. Because of the known correspondence between integer programming formulations and graphs, this is a first step toward detecting almost symmetries in integer programming formulations. Though we are only able to compute almost symmetries for graphs of modest size, the results indicate that almost symmetry is definitely present in some real-world combinatorial structures, and likely warrants further investigation.The second topic explored in this thesis is integer programming formulations for the unit commitment problem. The unit commitment problem involves scheduling power generators to meet anticipated energy demand while minimizing total system operation cost. Today, practitioners usually formulate and solve unit commitment as a large-scale mixed integer linear program.The original intent of this project was to bring the analysis of almost symmetries to the unit commitment problem. Two power generators are almost symmetric in the unit commitment problem if they have almost identical parameters. Along the way, however, new formulations for power generators were discovered that warranted a thorough investigation of their own. Chapters 4 and 5 are a result of this research.Thus this work makes three contributions to the unit commitment problem: a convex hull description for a power generator accommodating many types of constraints, an improved formulation for time-dependent start-up costs, and an exact symmetry reduction technique via reformulation

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Information geometry

    Get PDF
    This Special Issue of the journal Entropy, titled “Information Geometry I”, contains a collection of 17 papers concerning the foundations and applications of information geometry. Based on a geometrical interpretation of probability, information geometry has become a rich mathematical field employing the methods of differential geometry. It has numerous applications to data science, physics, and neuroscience. Presenting original research, yet written in an accessible, tutorial style, this collection of papers will be useful for scientists who are new to the field, while providing an excellent reference for the more experienced researcher. Several papers are written by authorities in the field, and topics cover the foundations of information geometry, as well as applications to statistics, Bayesian inference, machine learning, complex systems, physics, and neuroscience
    corecore