87,085 research outputs found

    Why and How Your Traceability Should Evolve: Insights from an Automotive Supplier

    Full text link
    Traceability is a key enabler of various activities in automotive software and systems engineering and required by several standards. However, most existing traceability management approaches do not consider that traceability is situated in constantly changing development contexts involving multiple stakeholders. Together with an automotive supplier, we analyzed how technology, business, and organizational factors raise the need for flexible traceability. We present how traceability can be evolved in the development lifecycle, from early elicitation of traceability needs to the implementation of mature traceability strategies. Moreover, we shed light on how traceability can be managed flexibly within an agile team and more formally when crossing team borders and organizational borders. Based on these insights, we present requirements for flexible tool solutions, supporting varying levels of data quality, change propagation, versioning, and organizational traceability.Comment: 9 pages, 3 figures, accepted in IEEE Softwar

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    On Improving Automation by Integrating RFID in the Traceability Management of the Agri-Food Sector

    Get PDF
    Traceability is a key factor for the agri-food sector. RFID technology, widely adopted for supply chain management, can be used effectively for the traceability management. In this paper, a framework for the evaluation of a traceability system for the agri-food industry is presented and the automation level in an RFID-based traceability system is analyzed and compared with respect to traditional ones. Internal and external traceability are both considered and formalized, in order to classify different environments, according to their automation level. Traceability systems used in a sample sector are experimentally analyzed, showing that by using RFID technology, agri-food enterprises increase their automation level and also their efficiency, in a sustainable wa

    Utilizing multifaceted requirement traceability approach: a case study

    Get PDF
    Software evolution is inevitable. When a system evolves, there are certain relationships among software artifacts that must be maintained. Requirement traceability is one of the important factors in facilitating software evolution since it maintains the artifacts relationship before and after a change is performed. Requirement traceability can be expensive activities. Many researchers have addressed the problem of requirement traceability, especially to support software evolution activities. Yet, the evaluation results of these approaches show that most of them typically provide only limited support to software evolution. Based on the problems of requirement traceability, we have identified three directions that are important for traceability to support software evolution, i.e. process automation, procedure simplicity, and best results achievement. Those three directions are addressed in our multifaceted approach of requirement traceability. This approach utilizes three facets to generate links between artifacts, i.e. syntactical similarity matching, link prioritization, and heuristic-list based processes. This paper proposes the utilization of multifaceted approach to traceability generation and recovery in facilitating software evolution process. The complete experiment has been applied in a real case study. The results show that utilization of these three facets in generating the traceability among artifacts is better than the existing approach, especially in terms of its accuracy

    Agrifood logistics and food traceability

    Get PDF
    Traceability systems are recordkeeping systems designed to track the flow of product and/or product attributes through the production process and throughout the supply chain from producers to consumers. The aim of this study is to review the current status of traceability systems in food companies, compare different traceablity systems applied by food companies, and analyse the sources of variation in their efficiency. A traceability system is characterized by its breadth, depth, and precision. Differences in efficiency are attributed to the costs and benefits of traceability’s implementation to these three traceabiligy characteristics. Three case studies were conducted during the period April-May 2005. All cases were large food companies, with more than 250 employees, and operating for more than 20 years in Greece. All companies had a traceability system in operation. All companies had implemented a traceability system not because legislation required, but because they found it was a valuable business tool. In the operation level, the main problem was whether or not suppliers could provide traceability information in a useful format. All companies reported the same benefits from the traceability system: Better control of supply chain as well as better quality assurance –higher levels of food quality & safety

    An analysis of the requirements traceability problem

    Get PDF
    In this paper1, we investigate and discuss the underlying nature of the requirements traceability problem. Our work is based on empirical studies, involving over 100 practitioners, and an evaluation of current support. We introduce the distinction between pre-requirements specification (pre-RS) traceability and post-requirements specification (post-RS) traceability, to demonstrate why an all-encompassing solution to the problem is unlikely, and to provide a framework through which to understand its multifaceted nature. We report how the majority of the problems attributed to poor requirements traceability are due to inadequate pre-RS traceability and show the fundamental need for improvements here. In the remainder of the paper, we present an analysis of the main barriers confronting such improvements in practice, identify relevant areas in which advances have been (or can be) made, and make recommendations for research
    corecore